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1 Preliminaries

1.1 Foreword on trees

Definition 1.1 (Unordered trees). An unordered tree τ is an ordered triplet {S, l, R}.

1. S is a set of elements called points

2. l is a function which assigns each point a positive integer l(x) called the level of x

3. R is a relation defined on S such that we read xRy as “x is a predecessor of y” or “y is a successor of x”,
which satisfies the following conditions:

(a) There is a unique point of level 1, called the origin of the tree.

(b) Every point other than the origin has a unique predecessor.

(c) For any points x, y, if y is a successor of x, then l(y) = l(x) + 1.

If x has no successor, is an end point of the tree; if one successor, a simple point, and if multiple, a junction
point.
A path is a denumerable sequence of points wherein each term is the predecessor of the next. A maximal
path/branch is one whose last term is an end point, or a path which is infinite.
For any point x, there exists a unique path Px whose last term is x. If y lies on Px, we say that y dominates
x. Further, if y 6= x, we say that x lies below y. Two points are comparable if one dominates the other. y is
between x and z if it is above one and below the other.

Definition 1.2 (Ordered trees). An ordered tree is a quadruplet {S, l, R, θ} wherein the first three elements
are as explicated above and θ is a function which assigns a sequence θ(z) to each junction point z which satisfies
the following conditions:

1. It contains no repetitions

2. Its set of terms consists of all the successors of z

The nth successor of z refers to the nth term of θ(z). The successor of a simple point will be spoken of as a
sole successor.
If each point has only finitely many successors, the tree is said to be finitely generated. If the tree has only
finitely many points, it is said to be finite; otherwise, infinite.
Ordered trees in which each junction point has exactly 2 successors are called dyadic trees. The first successor
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(in the sequence) is the left successor, and the second is the right successor.

Exercise. Let a be the junction point and x′, y′ be the successors by virtue of which x is to the left of
y. Further, let a′ and y′′, z′′ be the same corresponding to y being to the left of z. Either y′ dominates y′′ or
vice-versa; suppose the former without loss of generality. This implies that y′ dominates z, and the proof is
concluded with the junction point a (had we taken y′′ to dominate y′, the relevant junction point would have
been a′).

1.2 Formulas of propositional logic

Definition 1.3 (Symbols). The following symbols form the object language:

1. ¬,∧,∨, =⇒ (Logical connectives)

2. {p1, p2...} (Propositional variables)

Definition 1.4 (Formula). The set of formulas is the following:

1. Every propositional variable is a formula.

2. If X is a formula then so is the ordered pair 〈¬, X〉, the negation of X.

3. If X,Y are formulas, then for each of the binary connectives, the ordered triplet 〈X, b, Y 〉 is a formula.

Theorem 1.1 (Metatheorem). [Uniqueness of decomposition] For every formula X, one and only one of the
following conditions hold:

1. X is a propositional variable.

2. There is a unique formula Y such that X = ¬Y .

3. There is a unique pair X1, X2 and a unique binary connective b such that X = X1bX2.

Proof. A formula is either a propositional variable, an ordered pair or an ordered triplet. These are three are
mutually exclusive. Furthermore, an ordered pair (resp. triplet) uniquely determines its first and second (resp.
first, second and third) elements. Hence, proved.

Definition 1.5 (Subformula). The following characterizes the set of subformulas:

1. Propositional variables have no immediate subformulas.

2. 〈¬, X〉 has X as an immediate subformula and no others.

3. 〈X, b, Y 〉 has X,Y as immediate subformulas and no others.

4. If X is an immediate subformula of Y or identical to Y , then X is a subformula of Y .

5. If X is a subformula of Y and Y is a subformula of Z then X is a subformula of Z.

An atomic formula has no subformulas; otherwise, the formula is compound.

Definition 1.6 (Degree). The following characterizes the degree of a formula:

1. A propositional variable is of degree 0.
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2. If X is of degree n, then 〈¬, X〉 is of degree n+ 1.

3. If X,Y are of degrees n1, n2 then 〈X, b, Y 〉 is of degree n1 + n2 + 1.

Definition 1.7 (Formation tree). A formation tree τ for a formula X is an ordered dyadic tree whose points
are (occurrences of) formulas and whose origin is (an occurrence of) X such that

1. Each end point is (an occurrence of) a propositional variable

2. Each simple point is of the form 〈¬, Y 〉 and has (an occurrence of) Y as its sole successor

3. Each junction point is of the form 〈X, b, Y 〉 and has (occurrences of) X,Y as respective left and right
successors.

The principle of induction:
Let S be a set of formulas and P be a certain property of formulas. If

1. Every element of S of degree 0 has P

2. For every element X of S of positive degree, all the elements S of degree less than X have P

then X also has P .

Note: This is a meta-logical principle.

1.3 Boolean valuations and truth sets

Definition 1.8 (Boolean valuation). A valuation is a function from a set of formulas to truth-values F : S →
{t, f}.
A valuation v of E is called a Boolean valuation if for every X, Y in E, the following conditions hold:

1. The formula 〈¬, X〉 receives the value f if X receives the value t and t if X receives the value f .

2. The formula 〈X,∧, Y 〉 receives the value t if both X,Y receive the value t; otherwise, it receives the value
f .

3. The formula 〈X,∨, Y 〉 receives the value t if at least one of X,Y receive t; otherwise, it receives the value
f .

4. The formula 〈X, =⇒ , Y 〉 receives the value f if X,Y receive the values t, f respectively; otherwise, it
receives the value t.

If S1 is a subset of S2 and v1, v2 are respective valuations then we say v2 is an extension of v1 if they both
agree on the smaller set.
An interpretation of a set E means an assignment of truth values to all the variables which occur in any of the
elements of W.

Theorem 1.2 (Metatheorem). An interpretation on a set E can be extended to exactly one Boolean valuation
of E.
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Proof. It is easily provable by induction that an interpretation on a set E can be extended to at most one
Boolean valuation of E (assume there exist two and show that they must agree on all its elements).
To prove that it can be extended to at least one, consider an interpretation v0 of a single formula X. It is easy
to show using induction that there exists only one way of assigning truth values to all subformulas of X such
that the atomic subformulas are assigned the same truth values as under v0, and the compound subformulas
have their truth values determined by the above rules. Since X is also a subformula of itself, we can define what
it means for it to be true under an interpretation. Next, consider an interpretation for the set E. We now let v
be the valuation which assigns to each element of E its truth value under the interpretation v0. This yields the
required valuation and completes the proof.

Definition 1.9 (Tautology). X is a tautology if and only if X is true in all Boolean valuations (or under every
interpretation) of E.

Definition 1.10 (Satisfiability). A formula X is called (truth-functionally) satisfiable if and only if X is true in
at least one Boolean valuation. A set is satisfiable iff there exists at least one Boolean valuation in which every
element of S is true.

Definition 1.11 (Truth-functional implication & equivalence). S truth-functionally implies X if X is true in
every Boolean valuation which satisfies S.
X,Y are truth-funcionally equivalent if they are true in the same Boolean valuations. (Note: This is true iff
X ↔ Y is a tautology.)

Definition 1.12 (Truth set). A set S is called saturated or a truth set if it satisfies the following conditions:

1. 〈¬, X〉 ∈ S ↔ 〈X〉 /∈ S.

2. 〈X ∧ Y 〉 ∈ S ↔ 〈X〉, 〈Y 〉 ∈ S.

3. 〈X ∨ Y 〉 ∈ S ↔ 〈X〉 or 〈Y 〉 ∈ S.

4. 〈X =⇒ Y 〉 ∈ S ↔ 〈X〉 /∈ S or 〈Y 〉 ∈ S.

If S is the set of sentences true under an arbitrary valuation v, then (v is a Boolean valuation) ↔ (S is
saturated).
X is a tautology iff it is an element of the intersection of every truth set.
X is satisfiable iff it is an element of the union of every truth set.
S truth-functionally implies X iff X belongs to every truth set which includes S.

Exercise 1.

1. Suppose ¬X1 → t. If X2 → t, then X2 =⇒ X1 → f , contrary to our assumption of it being a tautology.
Therefore, ¬X2 → t. We may prove the converse similarly and conclude ¬X1 ↔ ¬X2.

2. Suppose X1 ∧ Y → t. Now, ¬(X2 ∧ Y )→ t =⇒ X2 → f =⇒ X1 → f . But since X1 was t, we conclude
that X2 ∧ Y → t. The other way round may be proven similarly.

3. Suppose X1 =⇒ Y → t. If X2 =⇒ Y → f , then ¬X2 ∨ Y → f =⇒ ¬X1 ∨ Y → f (from another part
to the exercise) =⇒ X1 =⇒ Y → f . This gives us the contradiction required.

4. etc.
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By induction from the above results, we can show that for any formula Z containing X1, replacing any number
of occurrences of it with X2 yields an equivalent formula.

Exercise 2. (X =⇒ f)→ t is equivalent to ¬X → t or f → t. Since the latter can never be true, we have
¬X → t. We may work our way back in a similar manner. All the others are similarly provable.
Using induction from the rest of the parts, we can show that a formula with propositional constants is either
equivalent to some other one without the, or to t or f .

Exercise 3. We prove this by induction.
This is true for every formula of degree 0 by definition.
Let X = Y1 ∨ Y2, where Y1 and Y2 are formulae in disjunctive normal form. Then it follows directly that so is
X.
Let X = Y ∧ Y2, where Y is a propositional variable and Y2 is a compound formula in disjunctive normal form.
An application of de Morgan’s law yields the required form for X. If we now let Y be compound as well, then
iterated application of the law yields the desired form.
Let X = ¬Y , where Y is a formula in disjunctive normal form. ¬Y = ¬C1 ∧ ...¬Cn. C1 = ¬p1 ∨ ...¬pn. This
completes the transformation.

Exercise 4.

1. X ∧ Y ↔ ¬(¬X ∨ ¬Y ).

2. X =⇒ Y ↔ ¬X ∨ Y . Use the fact that p ∨ q ↔ ¬(¬p ∧ ¬q).

3. Done above.

4. From 1 and 2, X ∧ Y ↔ ¬(X =⇒ ¬Y .

5. Replace X with ¬X in 2.

Exercise 5.

1. X|Y ↔ ¬X ∨ ¬Y .

2. X ∧ Y ↔ ¬(X|Y ); X =⇒ Y ↔ X|¬Y .

3. X ↓ Y ↔ ¬X ∧ ¬Y .
For |, ↓, the remaining can be done using the above results.

Extra problem: Prove that {|}, {↓} are the only singleton sets which are functionally complete.
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2 Analytic tableaux

2.1 The method of tableaux

Definition 2.1 (Signed formulas). Under any interpretation, a signed formula TX is called true if X is true
and false otherwise. FX is true if X is false and false otherwise.

A conjugate of a signed formula is the result of changing T to F (or vice-versa).

Notation.
α stands for any formula of the following type:

1. T (X ∧ Y )

2. F (X ∨ Y )

3. F (X =⇒ Y )

4. T¬X

5. F¬X

These are formulas of the conjunctive type, with direct consequences.
β stands for any formula of the following type:

1. F (X ∧ Y )

2. T (X ∨ Y )

3. T (X =⇒ Y )

These are formulas of the disjunctive type, which branch.

Exercise. Show that if the following conditions hold, S is a truth set:

1. If α ∈ S, so are its direct consequences α1, α2

2. If β ∈ S, so is at least one of its branches β1, β2.

3. Exactly one of X,¬X belongs to S.

Note: Sets satisfying 1 and 2 are called downward closed, while ones satisfying their converses are called upwards
closed.
In the following, read ¬ as conjugation.
Suppose we have α1, α2,¬α ∈ S. ¬α is a formula of type β, and by 2 we infer that at least one of ¬α1,¬α2

must be in S. Here we have a contradiction.
The case for the disjunction may be proven similarly (¬β becomes a formula of type α).
Note: Unlike the principle of induction, contradiction isn’t being used as a meta-logical principle here.

Definition 2.2 (Analytic tableaux). An analytic tableau for X is an ordered dyadic tree, whose points are
(occurences of) formulas, which is constructed as follows:
We start by placing X at the origin. Now suppose τ is a tableau for X which has already been constructed; let
Y be an end point. Then we may extend τ by either of the following two operations:
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1. If some α occurs on the path PY , then we may adjoin either α1 or α2 as the sole successor of Y .

2. If some β occurs on the path PY , then we may simultaneously adjoin β1 as the left successor of Y and β2
as the right successor of Y .

Given two trees of the above kind τ1 and τ2, we say the latter is a direct extension of the former if it can be
obtained by only one application of 1 or 2.
τ is a tableau for X if and only if there exists a finite sequence {τ1, ...τn} = τ such that τ1 is a one-point tree
whose origin is X and such that for each i < n, τi+1 is a direct extension of τi.

A branch θ of a tableau is closed if it contains some signed formula and its conjugate. τ is called closed if
every branch of τ is closed.
A branch θ of a tableau is complete if for every α occurring in it, both α1, α2 occur and for every β, one of
β1, β2 occur. τ is called complete if every branch of τ is complete.
By a proof of X is meant a closed tableau for FX.

Exercise. Prove that (p ∨ (q ∧ r)) =⇒ ((p ∨ q) ∧ (p ∨ r)) is a tautology.

1. F [(p ∨ (q ∧ r)) =⇒ ((p ∨ q) ∧ (p ∨ r))]

2. T [(p ∨ (q ∧ r))] (1)

3. F [((p ∨ q) ∧ (p ∨ r))] (1)

4. F [(p ∨ q)] (3)

5. F [(p ∨ r)] (3)

6. F [q] (4)

7. F [p] (4,5)

8. F [r] (5)

• T [p] (1)

Closed.

• T [(q ∧ r)] (1)

• T [q]

Closed.

This concludes the proof.

2.2 Consistency and completeness of the system

Definition 2.3. A system is consistent if no formula and its negation are both provable in it.

Theorem 2.1. Any formula provable by the tableau method is a tautology.
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Proof. Call a tableau true under v0 iff at least one branch is true under v0; a branch true if every term of it is
true under v0.
Let τ2 be an immediate extension of τ1. If τ1 is true, so is τ2; for either the extension was independent of the
true branch of τ1, or it was by an operation on that branch. If the former, we are done. If the latter, if the
extension was by operation 1, then τ2 has as branches (θ1, α1) and (θ2, α2). But since α was true, both α1 and
α2 are, and so both the branches are true, and so τ2 is true. The case may be proven similarly for operation 2,
and we are done.
Now, using induction, we may say that for any tableau, if the origin is true under an interpretation, then so is
the tableau. But since the origin of a closed tableau cannot be true under any interpretation, it is the negation
of a tautology; and so, every formula provable by the tableau method must be a tautology.

Since no formula and its negation can both be tautologies, it follows that the tableau method is consistent.

Definition 2.4 (Completeness). A system is complete if every tautology is provable in it.

Definition 2.5 (Hintikka set). We call S a Hintikka set if it satisfies the following three conditions:

1. No signed variable and its conjugate both are in S

2. If α ∈ S, then α1 and α2 ∈ S

3. If β ∈ S, then β1 or β2 ∈ S.

We shall also call such sets downward saturated. If the set of terms in a denumerable sequence is a Hintikka
set, we shall call it a Hintikka sequence.
The set of terms of a complete open branch θ of τ is a Hintikka set.

Theorem 2.2 (Hintikka’s lemma). Every Hintikka set is satisfiable.

Proof. Let S be a set of signed formulae. Assign an interpretation to the set in the following manner: if Fp ∈ S,
give p the truth value false; otherwise, give p the truth value true. (Since no Tp and Fp both can occur in S,
this is possible.)
It follows immediately that every signed variable is true under this interpretation. Now, consider an element X
of degree greater than 0 (making it either α or β), and suppose every element of a lower degree is true.
If it is α, then both α1, α2 must also be in S, since it is a Hintikka set. But by the induction hypothesis, both
α1 and α2 are true. Thus, α must be true. We may prove the same for β similarly.
Thus, we have found an interpretation in which every element of S is true, proving that S is satisfiable.

It follows as a corollary that every finite Hintikka set is satisfiable, and so, that any complete open branch
of any tableau is (simultaneously) satisfiable.

Theorem 2.3. For any tautology X, every completed tableau starting with FX must close.

Proof. From theorem 2.2, if τ is open, FX is satisfiable and so X cannot be a tautology. Therefore, for a given
tautology X, every completed tableau must close. Since for any formula X there exists a completed tableau
with X at the origin, this holds for any tautology.

Theorem 2.4. A finite set S is unsatisfiable iff there exists a closed tableau for S.

Proof. Recall that a set is satisfiable iff there exists at least one Boolean valuation in which every element is true.
But the definition of a Boolean valuation tells us that if every element is true, then so is X1 ∧ ...Xn. However,
the tableau drawn corresponds to just this formula, and since it is closed, we infer that it is not true. Therefore,
the set is unsatisfiable if there exists a closed tableau for it. The converse may be proven similarly.
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Definition 2.6. A tableau is atomically closed if every branch contains some atomic element and its conjugate.

Theorem 2.5. If S is unsatisfiable, then there exists an atomically closed tableau for S.

Proof. Suppose that a completed tableau for S has an atomically open branch. Since this branch is a Hintikka
set, it follows that it is satisfiable, and thus, that so is S. The theorem follows from this.

A corollary to this is that if there exists a closed tableau for S, then there exists an atomically closed tableau
for S.

Exercise 1.

1. This is true trivially for degree 0. Next, suppose X is a β. Then, at least one of β1, β2 is in the tableau.
But since the conjugate of X is also there, the conjugates of the above two are also there. From the
induction hypothesis, there is an atomically closed tableau for a set which has both β1 and its conjugate
(or 2). The other case may be dealt with similarly. Hence, proved.

2. Let X and its conjugate close an arbitrary branch of the tableau. From 1, we know that the branch can
be closed atomically. Hence, proved.

Exercise 2. We have to show that X is truth functionally equivalent to C1 ∨ ...Cn. We do this by first
showing that X is truth functionally equivalent to B1 ∨ ...Bn, and then that Bi is to Ci.
The first part true because an interpretation under which any one branch is true is immediately an interpretation
under which X is true, and vice-versa.
For an open branch Bi to be true under a valuation, all of its elements have to be true. This is equivalent to
the truth of Ci.
Hence, proved.

Exercise 3. We can reproduce the original 8 rules by replacing the other propositional connectives with
Sheffer’s symbol. For the joint denial connective, the rules will be (presented roughly)

1. TX ↓ Y =⇒ ¬X ∧ ¬Y

2. FX ↓ Y =⇒ X ∨ Y
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3 Compactness

3.1 Analytic proofs of the compactness theorem

Definition 3.1 (Consistency). A (denumerable) set is consistent if every finite subset of it is satisfiable. If a
set is not consistent, it is inconsistent.

A finitely generated tree is a tree in which each point has only finitely many successors.

Lemma 3.1 (König). Every finitely generated tree τ with infinitely many points must contain at least one
infinite branch.

Proof. Call a point good if it has infinitely many descendants and bad if finitely many. Since all points are
dominated by the origin, the origin is good.
A good point must have at least one good successor. Thus the origin a0 has at least one good successor a1,
which in turn has at least one good successor a2...this generates an infinite branch a0...an... (using the axiom
of choice, if the tree be unordered).

Theorem 3.2 (Compactness). If S is consistent, then S is satisfiable.

Proof. Let S be a consistent set arranged in a denumerable sequence X1, X2...Xn, .... Two methods are given.

1. Since S is consistent, a complete tableau for X1 cannot close. Attach X2 to every open branch and
complete the tableau again. Since S is consistent, a complete tableau for X1, X2 cannot close and so we
will have at least one open branch again.
This process is iterated ad infinitum, and since at no stage can the tableau close, we have an infinite tree.
By König’s lemma, this must have at least one infinite branch. The branch must be open, contain all the
Xi, and be a Hintikka set. By Hintikka’s lemma, it is satisfiable. It follows from this that S is satisfiable.

2. Note that consistency satisfies the following conditions:

• No set containing a propositional variable and its negation is consistent.
This is immediate.

• If {S, α} is consistent, so is {S, α1, α2}.
Suppose {S, α1, α2} is inconsistent. Then, {S1, α1, α2} is unsatisfiable, where S1 is a subset of S
and disjoint from α1, α2. This means that {S1, α} is unsatisfiable, and therefore, that {S, α} is
inconsistent. The result follows.

• If {S, β} is consistent, then so is at least one of {S, β1} and {S, β2}.
This can be proven in a similar manner as the above.

Now, we wish to construct a Hittika sequence whose terms include each Xi. Let us take X1 as the first
term.
Suppose now that at the nth stage we have a finite sequence θn as X1, Y2...Yn+i, i ≥ 0, such that
{S, Y2...Yn+i} is consistent. The next extension is done as follows:

• If Yn is of the type α, then θn+1 is X1, Y2...Yn+i, α1, α2, Xn+1. From the second condition on consis-
tency, {S, θn+1} is also consistent.

• If Yn is of the type β, then from the third condition on consistency, either {S, θn, β1, Xn+1} or
{S, θn, β2, Xn+1} is consistent. We choose θn+1 accordingly.
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• If Yn is a propositional variable, then we merely adjoin Xn+1 to θn.

This gives us the required Hintikka sequence, and as with the first proof, satisfiability follows.

The statement is trivial for finite sets.

Exercise. If there are k propositional variables in S, there are at most 2k possible interpretations. Let X1

be the element of S true under v1, and so on until Xn is the one true under v2k . It is clear that their disjunction
is satisfied (true) under all possible Boolean valuations, and it is thus a tautology.

3.2 Maximal consistency: Lindenbaum’s Construction

A proper extension of a set is a superset which contains at least one element not in it.

Definition 3.2. A set of formulas is called maximally consistent if it is consistent and if no proper extension
of it is consistent.

Lemma 3.3. Any maximally consistent set is a truth set.

Proof. First, we prove that if S is consistent, then for any formula X at least one of {S,X} and {S,¬X} is
consistent. For suppose both to be inconsistent; then there must be finite subsets S1, S2 of S such that {S1, X}
and {S2,¬X} are unsatisfiable. Let S3 = S1 ∪ S2. Then both {S3, X} and {S3,¬X} are unsatisfiable; and so
S3 is unsatisfiable, contradicting the consistency of S.
It follows directly from this that if M is maximally consistent, then for any X either X ∈M or ¬X ∈M .
Now, let M be a maximally consistent set. This means that for any formula X, at least one of X,¬X lies outside
M and also that for any formula X, at least one of X,¬X lies inside M . This satisfies the first condition for
truth sets. Next, suppose α ∈M . Then, ¬α1 /∈M , since {α,¬α1} is not satisfiable; and so, α1 ∈M . Similarly,
α2 ∈M . Conversely, let α1 ∈M,α2 ∈M . Since {¬α, α1, α2} is not satisfiable, we have α ∈M . This completes
the proof.

A property P of a set is said to be of finite character if for any set S, it has the property P iff all finite
subsets of S have the property P .
Note that consistency is of finite character.

Theorem 3.4 (Tukey’s lemma for the denumerable case). For any denumerable universe U and any property P
of subsets of U of finite character any set S (of elements of U) having property P can be extended to a maximal
subset of U having property P .

Proof. Arrange the elements of U in some denumerable sequence Y1, Y2...Yn, ... and define a denumerable se-
quence of sets in the following manner:
We set S0 = S. From Sn, we define Sn+1 as follows: Sn+1 = Sn ∪{Yn+1} if the right hand side has property P ;
otherwise, Sn+1 = Sn.
It is immediate that S0 ⊆ S1...Sn ⊆ Sn+1..., and that each Si has property P . We claim that M =
S0 ∪ S1...Sn ∪ Sn+1... is a maximal set having property P .
Let K be any finite subset of M . It follows that K must be a subset of Si for some i. Since Si has P and P is
of finite character, K has P . Since this is true of any finite subset K, we conclude also that M has P .
Now, take any Yi such that M ∪ {Yi} has P . Since P is of finite character, so does Si ∪ {Yi}. Then, Yi ∈ Si+1,
and so Yi ∈M . This concludes the proof.

The general version of the lemma (for any arbitrary universe U) is equivalent to the axiom of choice.
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Corollary 3.4.1 (Lindenbaum’s theorem). Every consistent set can be extended to a maximally consistent set.

Note that the above construction isn’t analytic in the sense of cut-free; the elements of the set constructed
aren’t limited to subformulas (or negations of subformulas) of the original set.

Definition 3.3 (Completeness of a set). S is said to be complete if every formula or its negation is in S.

Exercise. Let M be a consistent complete set. Let us try to extend it by adding a formula X. By
completeness, M has either X or ¬X; by consistency, it has only one of them. If it has X, then M isn’t
extended at all; if it has ¬X, then its extension is no longer consistent. Hence, proved.

3.3 An Analytic Modification of Lindenbaum’s Proof

Call Y a direct descendant of X if either X is some α and Y is α1 or α2, or correspondingly for β.
Call Y a descendant of X if there exists a finite sequence beginning with X and ending with Y such that each
term of the sequence (other than the first) is a direct descendant of the preceding term.
Let S0 be the set of all descendants of elements of S.

Theorem 3.5. Every maximally consistent subset of S0 is a Hintikka set.

Proof. Let M be a maximally consistent subset of S0.
Since it is consistent, it contains no variable and its negation. This satisfies the first condition for Hintikka sets.
Next, suppose α ∈ M . This means that α1, α2 ∈ S. Then, since M is consistent, so is {M,α}, and so is
{M,α1}. By maximality, we have α1 ∈ M . The proof for α2 and the third condition for Hintikka sets can be
done similarly.

3.4 The Compactness theorem for Deducibility

Definition 3.4 (Deducibility). X is deducible from a set S if there are finitely many X1, X2...Xn ∈ S such that
(X1 ∧X2... ∧Xn) =⇒ X is a tautology.

Theorem 3.6 (Compactness: second form). If X is true in all Boolean valuations which satisfy S, then X is
deducible from S.

Proof. By hypothesis, {S,¬X} is unsatisfiable. By the compactness theorem, some finite subset of it (which
must include ¬X, since S is satisfiable) must be unsatisfiable. Therefore, {X1, X2...Xn,¬X} is unsatisfiable. It
follows that (X1 ∧X2... ∧Xn) =⇒ X is a tautology.
Hence, proved.

A set is called deductively closed if every formula deducible from S lies in S.

Exercise. Prove that a consistent deductively closed set is the intersection of all its complete consistent
extensions (Tarski’s theorem).
Proof. We have to prove that S = S1 ∩ S2..., where S is a deductively closed set and S1, S2... are its complete
consistent extensions.
First, suppose X ∈ S. We wish to show that X ∈ each of S1, S2.... This follows because ¬X /∈ S and each of
them are extensions, so X ∈ S =⇒ X ∈ Sn. Therefore, S ⊆ S! ∩ S2...
Next, suppose X ∈ each of S1, S2.... If X is not deducible from S, then both S∪{X} and S∪{¬X} are possible
as consistent extensions of S, and so this would mean X /∈ S1 ∩ S2.... Thus, X must be deducible from S.
Hence, proved.
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4 First-Order Logic: Preliminaries

4.1 Formulas of Quantification Theory

Definition 4.1 (Symbols). The following symbols form the object language:

1. Logical connectives (as defined in 1.2)

2. Quantifiers (universal, ∀ reading ”for all”; existential, ∃ reading ”there exists”)

3. Individual variables (denumerably many)

4. Individual parameters (denumerably many)

5. n− ary predicates (for each positive integer n)

Definition 4.2 (Atomic formula). An atomic formula is an (n + 1)−tuple Pc1...cn where P is a predicate of
degree n and c1, ...cn are individual symbols.

Definition 4.3 (Formula). A is a formula iff there is a finite sequence of expressions which terminates with A
such that each term is either an atomic formula or is the negation, conjunction, disjunction or conditional of
earlier term(s), or is the existential or universal quantification of an earlier term (with respect to some variable
x).

A pure formula is a formula without any individual parameters.

Definition 4.4 (Degree). The following characterizes the degree of a formula.

1. Every atomic formula is of degree 0.

2. d(¬A) = d(A) + 1

3. d(A ∧B) = d(A ∨B) = d(A =⇒ B) = d(A) + d(B) + 1

4. d((∀x)A) = d((∃x)A) = d(A) + 1

Definition 4.5 (Substitution). The substituted formula Ax
a is defined from A by the following induction scheme:

1. If A is atomic, then Ax
a is the result of substituting a for every occurence of x in A.

2. [AcB]xa = Ax
acB

x
a , where c is any one of the binary connectives

3. [¬A]xa = ¬[Ax
a]

4. [(Cx)A]xa = (Cx)A, [(Cx)A]ya = (Cx)[Ay
a], where C is any one of the quantifiers.

A closed formula or a sentence is a formula such that A = Ax
a for every variable x and parameter a.

The occurrence of a variable in a formula is bound if it is within the scope some occurrence of ∀x or ∃x, or
is immediately preceeded by a quantifier. Otherwise, we say that the variable is free.

13



Definition 4.6 (Subformula). The following characterizes the set of subformulas (in the sense of first-order
logic):

1. 〈¬, X〉 has X as an immediate subformula and no others.

2. 〈X, b, Y 〉 has X,Y as immediate subformulas and no others (for a binary connective b).

3. For any parameter a, variable x and formula A, Ax
a is an immediate subformula of (∀x)A and (∃x)A.

4. If X is an immediate subformula of Y or identical to Y , then X is a subformula of Y .

5. If X is a subformula of Y and Y is a subformula of Z then X is a subformula of Z.

Definition 4.7. A formation tree (in the sense of first-order logic) is a tree in which each end point is atomic,
and every other point satisfies one of the following conditions:

1. It is of the form AbB and has A,B for its first and second successors, and has no other successors

2. It is of the form ¬A and has A for its sole successor

3. It is of the form (Cx)A for some quantifier C and has Ax
a1
, Ax

a2
... as its successors.

Note that, since we have denumerably many parameters, formation trees for quantification theory are not
finitely generated.

4.2 First-order Valuations and Models

Definition 4.8 (First order valuation). Let U be any non-empty set, which we shall call a universe of individuals.
A U-formula is like a formula, except that it has elements from U instead of individual parameters. Let EU be
the set of all closed U-formulas, and let v be an assignment of truth values to all its elements.
If, for every A ∈ EU and every variable x, the following hold:

1. v is a Boolean valuation of EU

2. (∀x)A is true iff for every k ∈ U,Ax
k is true under v

3. (∃x)A is true iff for at least one element k ∈ U,Ax
k is true under v.

then v is a first-order valuation with respect to the universe U.

Definition 4.9 (First-order truth set). A subset S of EU is a first-order truth set with respect to the universe
U if it satisfies all the conditions of a propositional truth set, as well as the following:

1. (∀x)A belongs to S iff for every k ∈ U,Ax
k belongs to S

2. (∃x)A belongs to S iff for at least one element k ∈ U,Ax
k belongs to S.

It follows that S is a first-order truth set iff the characteristic function of S is a first-order valuation.

An atomic valuation is an assignment of truth values to all the atomic elements of EU .

Theorem 4.1 (Metatheorem). Any atomic valuation v0 of EU can be extended to exactly one first-order
valuation v of EU .
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Proof. A valuation tree for A is a formation tree along with a truth value at every points, being determined by
the truth values of its successors. For any atomic valuation, one can show by induction that there exists only
one valuation tree for A, and A thus receives a unique value.

Note: Since a point can have infinitely many successors in general, formalizing the induction argument above
will require a stronger language than first-order logic.

Definition 4.10 (First-order interpretation). An interpretation is a function which maps an n-place predicate
P to an n-place relation P ∗ between elements of U.

An atomic U-sentence Pa1.. is true under I if the elements a1... stand in the relation P ∗. Thus, an inter-
pretation I induces a unique atomic valuation v0.

Definition 4.11 (Models). An interpretation in which every element of a given set is true is called a model for
the set.

A pure formula A is valid if for every universe U, A is true under every first-order valuation of EU .
A pure formula is satisfiable if for at least one universe U there is at least one first-order valuation of EU under
which A is true.
A sentence with parameters a1...an is satisfiable in a universe if there exists at least one interpretation in which
there exists at least one n−tuple of elements in U such that the formula produced by substituting them for the
parameters is true under I. Validity is defined similarly, but with the condition being for every n−tuple under
every interpretation.

Exercise 1. Show that the validity or satisfiability of a formula in a universe U depends only on the cardi-
nality of U .
Answer 1.

Exercise 2. Show that if a formula is satisfiable/valid in U, it is satisfiable/valid in any superset/subset
(resp.) of U .
Answer 2.

Answer 3. ∀x¬R(x, x) ∧ ∀x∀y∀z(R(x, y) ∧R(y, z) =⇒ R(x, z)) ∧ ∀x∃yR(x, y).

Answer 4. If ¬A is not satisfiable, there is no interpretation under which ¬A is true, i.e., ¬A is false under
every interpretation. Since every first-order valuation also satisfies the basic properties of a Boolean valuation,
this means that A is true under every interpretation, i.e., A is valid. The converse and the second half can be
proven similarly.

Exercise 5.

1. Show that A(a1...an) is valid iff (∀x1)...(∀xn)A(x1...xn) is valid.

2. Show that A(a1...an) is satisfiable iff (∃x1)...(∃xn)A(x1...xn) is valid.

4.3 Boolean valuations vs. First-order valuations

Call a sentence a Boolean atom iff it is either an atomic sentence or of the form (Cx)A, where C is a quantifier.
Consider the universe V whose elements are the individual parameters. The following statements hold:
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1. Every first-order valuation of EV is a Boolean valuation but not vice-versa.

2. Any assignment of truth values to all the Boolean atoms of EV can be extended to exactly one Boolean
valuation of EV .

3. If S is an infinite subset of EV such that every finite subset of S is truth-functionally satisfiable (true in
at least one Boolean valuation of EV ), then S is truth-functionally satisfiable. (In the proof for this, the
tableau will stop at (Cx)A as an atom, rather than continuing to split off.)

Finally, to reiterate: A sentence is valid if it is true under all first-order valuations; a sentence is a tautology
if it is true under all Boolean valuations.

Answer 1. Since the left-hand side and the right-hand side of the implication are two different atoms, we
can assign f to the RHS and t to the LHS as a well-defined valuation.

Answer 2. ∀x(P (x)) ∧ ∀x(¬P (x))

Answer 3.
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5 First-order analytic tableaux

5.1 Extension of our unified notation

Formulae of the type α and β are defined as they were in propositional logic.
γ stands for any formula of the following type:

• T (∀x)A

• F (∃x)A

δ stands for any formula of the following type:

• F (∀x)A

• T (∃x)A

Four laws concerning first-order satisfiability:

1. If S is satisfiable and α ∈ S, then {S, α1, α2} is satisfiable. The proof is trivial.

2. If S is satisfiable and β ∈ S, then at least one of {S, β1} and {S, β2} is satisfiable. The proof is trivial.

3. If S is satisfiable and γ ∈ S, then for every parameter a, {S, γ(a)} is satisfiable. The proof is similar to
the fourth one.

4. If S is satisfiable and δ ∈ S, then if a is any parameter which does not occur in S, {S, δ(a)} is satisfiable.
Proof: By hypothesis, there exists an interpretation I of all predicates of S in some universe U and a
mapping ϕ of all parameters of S into elements of U such that for every A ∈ S, the U−sentence Aϕ is
true under I.
In particular, this means that δϕ is true under I; therefore, there must be at least on element k ∈ U such
that δϕ(k) is true under I.
We want the parameter a to map to k; therefore, we set a to be any parameter not in S and extend ϕ by
ϕ∗(a) = k. δ(a)ϕ

∗
is true under I, and the proof is complete.

5.2 Analytic tableaux for quantification theory

In addition to the rules of the analytic tableaux for propositional logic, the following are added:

1. From any formula of the form γ, we infer γ(a).

2. From any formula of the form δ, we infer δ(a) (with the proviso that a is new).

Theorem 5.1. Every sentence provable by the tableau method for first-order logic is valid.

Proof. Any immediate extension of a tableau which is satisfiable is again satisfiable.
If the origin is satisfiable, then by induction, at least one branch of the tableau is satisfiable and hence open.
Therefore, if a tableau closes, then the origin must be unsatisfiable.

Since no sentence and its negation can both be valid, it follows that the tableau method is consistent for
first order logic.

5.3 The Completeness Theorem

17


