
1.1 

A relational structure is an ordered quadruple. 

1. The first object is the (non-empty) domain, A. 

2. The second object is a set of n-ary relations on A, where n depends on the element number 

of the relation in the set. 

3. The third object is a set of n-ary functions on A, where n depends on the element number of 

the function in the set. 

4. The fourth object is a set of elements of A. These are called “distinguished elements”. 

It may be remarked that the third set is a subset of the second set, and the fourth a subset of the 

first. If 3 and 4 are empty, it is said to be a purely relational structure. 

Suppose now that 2 is a single-element set with only the binary relation of equality. Bridge 

comments: “To include the equality relation in the presentation of a structure is, in a sense, 

superfluous. It does not imply any ‘structure’ in the underlying domain. However, in section 1.2 we 

introduce a language associated with a given structure which depends intrinsically (on 1, 2, 3 and 

4)…and two different languages arise depending on whether or not equality is included.” (1) 

An example is given wherein a relational structure with non-empty 1/2/3/4 is reduced to one with 

non-empty 1/2/4 and ultimately a purely relational structure, i.e. non-empty 1/2 only. From a 

mathematical viewpoint, remarks Bridge, these relational structures are identical; but as relational 

structures they are distinct. (1) 

In construing as a relational structure a field with many different types of objects, replacing the, say, 

binary functions with ternary relations gives us a way to distinguish between them by ‘imposing 

additional structure’. (We have the power to say that there exists no operation involving the 

addition of a vector and a scalar.) (2) 

The ordered triplet consisting of 

1. the set K producing the distinguished elements 

2. The function coding the arity of the relations (λ) 

3. The function coding the arity of the functions (µ) 

defines the type of relational structure. If they are identical, the two structures are said to be of the 

same type. 

If there are bijections taking us from this triplet for one structure to the triplet for another, these 

two structures are called of the similar type. “…can be readily re-indexed so as to become structures 

of the same type.” (3) 

A relational structure S is a substructure of the relational structure R if: 

1. The domain of S (call it B) is a subset of the domain of R (call it A). 

2. The intersection of the nth relation in set #2 of R with the nth power of B gives a set which is 

effectively a manifestation of that very relation such that it is restricted to work within the 

bounds of the substructure. The restriction of Rn on B. These restricted versions of those 

relations should constitute set #2 of S. 

3. It follows that the set #3 of S is a subset of the set #3 of R. 

4. Each distinguished element of R is an element of B. 

If S is a substructure of R, R is an extension of S. 



A mapping from the domain of one relational structure to the domain of another relational structure 

is a homomorphism if the same mapping also maps from the sets #2, #3 and #4 of the first relational 

structure to those of the other. In Bridge’s words, “h is a mapping which preserves structure.” 

Question: Suppose h: C->D is a homomorphism; C, D are relational structures. Is the image of C 

under h, C(h), a substructure of D? 

Answer: Yes. Let C be (A, R, f, K) and D be (B, S, g, J). Now, we are given a homomorphism h: C->D. 

Note that the range is always a subset of the co-domain. Take A(h) to be the range; this is then a 

subset of B, the co-domain. Arguing similarly for the other sets, we conclude that C(h) is a 

substructure of D. 

A homomorphism is an isomorphism if its inverse exists. (Bridge has not used that particular term 

(‘inverse’), however, so perhaps it is not mathematically rigorous to call it that.) 

If the range is equal to the co-domain for an isomorphic mapping, it is called an embedding. 

To prove: That h: C->D is an isomorphism and h-1: D->C iff h is a bijection and the conditions for being 

a homomorphism are satisfied. 

Proof: Suppose h is a bijection. Then h-1 exists. h(A)=B=>h-1o h(A)= h-1 (B)=> h-1 (B)=A (by definition of 

inverse). Therefore, h-1 is a mapping from B to A. We argue similarly for set #2, #3 and #4 and our 

proof is then complete.  

Question: Give an example of non-isomorphic structures C, D of the same type such that there exists 

a homomorphism h which is a one-one map from the domain A of C to the domain B of D.  

Answer: Let A=N, B=Q’. Since the cardinality of N is less than that of Q’, no mapping from one to the 

other can be surjective. Thus, the any structures with these domains are non-isomorphic. We can 

now pick any arbitrary one-one homomorphism h between A and B and provide the desired 

structures C and D. 

1.2 

First-order language consists of 

1. Variables (enumerably many) (4) 

2. Constants (enumerably many) 

3. Predicates (Relations) 

4. Functions 

5. Logical connectives: Negation+Implication/Negation+Conjunction/… 

6. The universal quantifier 

7. Brackets 

The language depends only on the structure (or rather, the type of structure) (“a one-one 

correspondence”). A structure is a realization of a language. 

The smallest set X which includes all variables and constants, alongside all those functions whose 

domain and range is a subset of the set of all constants and variables (equivalently, of the set of all 

terms), forms the set of all terms, X. 

Subformulae are defined. Its action is to break up a formula into its atomic constituents in a 

reversible manner. (φ can be reconstructed if subform(φ) is given.) “(A formula) is atomic iff its 

subform consists of a single element.” 



Remark: Well-formed formulae could have been defined equally well with the negation and any 

other logical connective in place of conjunction, and with the existential instead of the universal 

quantifier. Regimentation is merely an act of convenience. (5) 

Scope (exhibited occurrence), bound and free variables are defined. 

An interesting analogy: “The effect of the (definite) integral sign is similar to that of the quantifier…it 

binds.” 

A term cannot be substituted into a variable if another variable in the term ends up being 

‘accidentally’ bound upon substitution. 

A formula with no free variables is a sentence. The closure of a formula consists of binding its free 

variables with universal quantifiers to turn it into a sentence. 

1.3 

“A first order language L, even though associated with a given (type of) structure, is technically a 

syntactic object with no semantic significance.” 

Interpretation: An object in the language L is taken to a correspondent in the structure S; a formula 

becomes an assertion about the structure. 

Given an assignment (a sequence of element(s) from the domain A), Bridge defines how to interpret 

a formula (what each term in φ denotes in S). Variables are replaced by corresponding elements in 

the assignment, constants and functions turn into that which they are in one-one correspondence 

with (and the latter changes also in tandem with how the terms in its argument change). 

Note: An assignment is the same as the ‘domain of interpretation’ that was spoken of by the 

professor. 

An assignment is said to satisfy an atomic formula in the backdrop of a structure iff the assigned 

formula is an element of the set of all relations in S (set #2). Various lemmas are subsequently 

stated. 

Exercises 1.12, answers: 

a) If q0<q1 

b) If q1<q2 

Theorem: An assignment satisfies a formula iff imposing those terms in it denoting its free variables 

onto any other assignment leads always to another assignment which satisfies the formula.  (Only 

the free variables affect the truth-value of a formula under an assignment.) 

Proven by induction on the length of the formula. Base step: This is verified to be true for an atomic 

formula. Induction step: Assume the theorem to be true for all subformulae of a formula. Now, since 

we have committed to three items in our language (negation, conjunction and universal quantifier), 

we show one by one that the theorem holds for formulae of those forms on the strength of our 

induction hypotheses, and then we are done. (5) 

Either a sentence or its negation satisfies all assignments. (Either a sentence is true, or its negation 

is.) Since a sentence has no free variables, this follows immediately from the previous theorem. 

Lemma: An assignment satisfies a formula iff replacing a bound variable with another variable not in 

the formula yields a new formula which is satisfied by the assignment. 



Proven again by induction. 

Question: Construct a formula which is satisfied by an assignment with free occurrences of a variable 

such that replacement of a bound variable in it with that one yields a new formula which is not 

satisfied by the assignment. 

Answer: In the domain Q, there exists an x such that x is strictly less than y. 

Lemma: If a term is free for a variable, then an assignment satisfies the formula yielded by 

substituting the variable with the term iff the original formula is satisfied by an assignment wherein 

the interpretation of that variable is set to be the same as the interpretation of the substituted term.  

Proof: Suppose that k variables occur in the term t. Since t is free for vi , there no free occurrences of 

it within the scope of a quantifier. However, there may be bound occurrences of the other variables 

in t in the formula. Using the previous lemma, we substitute these variables with some others not 

occurring in it; and then we may proceed normally to prove the given lemma by induction. 

Question: Let A, B be structures of the same type and h: A->B be an isomorphism. Show that if a 

formula is satisfied under A by an assignment (a1, a2…) then the formula is satisfied under B by the 

assignment (h(a1), h(a2)…). 

Answer: If the formula is satisfied under A by the given assignment, it means that the denoted 

formula is an element of the set of all relations in A. By definition, an isomorphism maps an element 

from a given structure to a corresponding element in the other structure and so under the action of 

h, our formula becomes an element of the set of all relations in B. 

Exercise 1.16, answers: 

a) If x is bound, our result follows from lemma 1.25. (“The meaning of φ in any given 

interpretation is unchanged.”) 

If x is free: The if-statement already tells us that the formula is satisfied for all assignments. 

b) Since our relational structure does not have equality but only ordering, it is intuitively 

evident that, between two assignments, two elements are equivalent if they follow the same 

order. Theorem 1.23’s requirement of ai=bi may then be weakened to an ordering 

requirement rather than an equality requirement and we may proceed with the proof. 

Some definitions: 

1. If a formula is satisfied in a structure/realization of a language for all assignments, it is said 

to be valid. The structure/realization is then a model for the formula. (6) 

2. If a formula is valid in all realizations of a language, it is universally valid. 

3. A formula is satisfiable if there is for some realization of a language some sequence such 

that it is satisfied. 

4. A formula is refutable if its negation is satisfiable. 

Question: Show that a formula is universally valid iff its negation is not satisfiable. 

Answer: This means that there exists no realization in the language which satisfies the formula’s 

negation for an assignment. Converting the existential quantifier to a universal, we obtain that for all 

realizations, the formula is valid, and we are done. 

Question: Show that a formula is valid in a realization iff its universally quantified version is; and that 

it is satisfiable in a realization iff its existentially quantified version is. 



Answer: Second one: Choose your assignment such that each element in the assignment is the 

element asserted to exist in the existentially quantified version of the formula. We have thus found 

an assignment which satisfies the formula in the given realization and the proof is complete. First 

one: Follows from definition 1.21, iv). 

“There are many similarities between tautologies and universally valid formulae, but there is one 

very important difference. There is a simple procedure to determine whether φ is a tautology. It is 

sufficient to examine the truth table of φ. In general, however there is no finite procedure to 

determine of a given first order formula whether or not it is universally valid.” 

In general, validity, universal validity, satisfiability and refutability are undecidable. [Church (1936)] 

Some cases in which they are decidable: 

Lemma 1.28: Given a formula φ there are only finitely many non-isomorphic realizations of the 

language of φ with a domain of (finite) cardinality N. 

Proof: The maximum number of interpretations is found, and found to be finite, by computing 

permutations and combinations. And if there exist only finitely many interpretations, it follows that 

there exist only finitely many realizations. 

In certain cases, then, a formula’s validity is decidable: A formula is valid in a realization with finite 

domain iff it is satisfied by all the finitely many interpretations. 

Lemma 1.29: Suppose φ ϵ Form(L) contains only k unary predicate letters and no functions or 

constants. Then φ is universally valid iff φ is valid in all domains with ≤2k elements. 

Proof: Suppose the negation of a formula is satisfied by an assignment under a given realization, that 

is, φ is not valid under a given realization. Then there exists another realization with domain ≤2k 

elements in which φ is not valid. First, we define an equivalence relation on the domain of the given 

realization, which is that two elements are related if they both belong to a given predicate. Define a 

set A* which is the set of all equivalence classes. Evidently, there are at most 2k elements in this set, 

since an element is either in a predicate or not in it, and so there are at most that many equivalence 

classes. This is our domain. We then redefine our predicates such that R*i is the set of equivalence 

classes of all the elements which lie in Ri. Induction now tells us that ~ φ is satisfied by this new 

structure. This tells us that if φ is not valid in some structure then it is not valid in some structure 

with ≤2k elements in its domain. Moreover, obviously, if φ is not valid in some structure with ≤2k 

elements in its domain, it is not valid in some structure. Inverting the implication, we obtain the 

desired lemma. 

Note: The proof fails if the formula contains functions or constants because ~ φ may then be 

satisfied in some structure and yet not be satisfied in any structure with ≤2k elements in its domain. 

Take ~φ as “A proper subset X of A is in one-one correspondence with A.” over the domain N=A. 

(This can never be satisfied over a finite domain!) 

Lemma 1.30: A formula without any quantifiers is valid in a realization iff it is valid in its 

substructure. 

Proof: The assignment is a sequence of A if it is a sequence of A*, by hypothesis. By induction, the 

denotation of this assignment in A* is equal to its denotation in A. We then use induction again on 

the length of the formula to prove the lemma. 



Note: If the formula contains quantifiers, the proof fails at the second induction. The atomic case 

deviates from the preliminary result on terms and is false in general, since there may exist a b in A 

(which would then not be in A*, since the formula is valid in the substructure) which, when denoted 

into the bound term, does not satisfy the assignment. (The universal quantifier requires that all b 

satisfy.) 

Theorem: Suppose a sentence is of the following form: Existential quantifiers on n variables, 

followed by the universal quantifier on y vector, followed by a ψ such that ψ contains no quantifiers, 

functions or constants. If this sentence is satisfiable, then it is satisfiable in a domain with at most n 

elements. 

Proof: Take a realization with k predicates and domain A in which the sentence is valid. Then there 

exists some sequence in the domain which, when substituted into the n variables with the existential 

quantifier, yields a valid sentence. Furthermore, any sequence in the domain may be substituted in 

place of y vector with the validity of the sentence retained. The sentence is now quantifier-free, and 

application of lemma 1.30 tells us that this final sentence is also valid in all substructures of this 

realization. 

Define a substructure with domain containing the n elements substituted into the variables. Since 

the sentence is also valid in this realization and all its substructures, we conclude that all structures 

with ≤n elements in their domain are models for the sentence. 

Corollary: If the sentence is of the form described above, it is universally valid iff it is valid in all 

domains with at most n elements. 

Proof: Apply the previous theorem to ~sentence. 

Definition: If the union of a set of formulae with φ is a subset of the set of all formulae in a 

realization of a language and all formulae in said set are satisfied for a given sequence under a given 

realization, the set of formulae logically implies φ and φ is satisfied for this sequence under the given 

realization. A logical consequence of the empty set is a universally valid formula. 

Material implication v/s logical implication: The former is intra-model, the latter is inter-model. 

(Syntactic v/s semantic.) 

Question: Show that, in theorem 1.31, if the sentence is permitted to have m distinct constants, it is 

satisfiable in a domain with at most m+n elements. Show also that the theorem fails if the sentence 

has functions. 

Answer: Obviously, alongside the n elements denoted by the existentially quantified variables, we 

need m more for there to be something to denote for the m constants, and so the result extends to 

a domain of at most m+n elements. Moreover, the theorem fails in the presence of functions 

because we can have a function with an arity greater than n. 

Question: Show that φ I-- ψ iff I-- φ->ψ. 

Answer: From the premise, whenever/if φ is satisfied, so is ψ. Then the conclusion also follows from 

the definition. 

Exercise 1.20, answers: 

a) Yes 

b) No 



Exercise 1.21, answer: Use the procedure described at the end of lemma 1.28 (which will work 

because the domain is finite, as prescribed in theorem 1.31) for all m+1 formulas and lemma 1.22, 

b). 

Question: Show that, if a universal formula is valid under a structure, it is valid under all of its 

substructures; and that if an existential formula is valid under a structure, it is valid under all of its 

superstructures. 

Answer: Merely emulate the proof of lemma 1.30. In the universal case: The issue that comes up 

with quantifiers pointed out in the note does not hold, since if the formula is satisfied for all b in A, it 

is also satisfied for all A* C A. In the existential case: If there is a sequence in A* which satisfies the 

formula, there will also be a sequence in A which satisfies, since A* C A. 

 

Points of interest/queries: 

1) It is observed that two relational structures and languages can be distinct and yet identical 

from a mathematical viewpoint. Is this significant? Does this allow us to distinguish between 

objects mathematics is as such blind to, such as between the modulus function and the root-

of-square function? 

2) It was said that purely relational structures are technically simpler but with reduced 

complexity than the original structure. How is it that we see the converse occurring here? 

3) What is the relationship between being of similar type and being isomorphic? 

4) What was the difficulty which not imposing this condition entailed? 

5) The anthropocentric guider of convenience/simplicity crops up again. 

6) How do we determine the mapping which takes an object in the language to its 

correspondent in the realization? 

7) Let it be noted that notions such as ‘proven’ and ‘proof by induction’ rely on there being an 

“unambiguous segment of language” (in the professor’s words) which I am in suspicion of. 

8) The backdrop in which the statement made may be said to be true. 

 

 

2.1 

Rules of inference (here, modus ponens and generalization) and a certain set of axioms are taken. 

Suppose the union of a set of formulae with φ is a well-formed formula. Then, a derivation of φ from 

this set is a finite sequence of formulae which ends with φ such that the other formulae in the 

sequence are either axioms, or a part of the set, or is an immediate consequence of the previous 

ones by modus ponens or generalization (note that the quantified variable is not to occur free in the 

set). 

φ is a theorem of the predicate calculus if it is derivable from the empty set. Else, it is a theorem of 

the set in question (and all its supersets). This should also inspire the idea of a minimal, finite set 

from which the formula is derivable. This set will consist of formulae in the derivation which occur 

neither as axioms nor as immediate consequences of our rules of inference, but only as the second 

condition. (1) 



Determining whether a given formula is an axiom is decidable. Determination of whether a given 

sequence is a derivation is decidable. 

We now call a certain set of our axioms tautologies. Furthermore, a formula is an instance of a 

tautology if it can be produced by replacing each statement letter of a tautology with some formula. 

Exercise 2.1, answers: 

a) Yes, from axiom 1. 

b) No. 

c) Yes, from axiom 4. 

Lemma: Each instance of a tautology is universally valid. 

Proof: We observe that, for negation and conjunction, satisfaction mimics truth value. Now, define 

an assignment of truth values to the statement letters of the tautology from which the instance of a 

tautology was formed such that it yields T iff the formula substituting the statement letter is 

satisfied. It follows that all subformulae of the instance built up only from the substituted formulae 

are satisfied iff the corresponding subformulae of the tautology yields T under an assignment of 

truth values. Since the tautology itself yields T for all assignments of truth values, it follows that the 

instance of a tautology being considered is satisfied for all realizations and assignments. 

It is desirable to take all instances of tautologies as axioms instead of just tautologies, since our 

implicit aim with formalization is to generate as theorems all universally valid formulae, and we wish 

then to be able to prove all instances of tautologies. Note that determining whether a given formula 

is a tautology is decidable (truth tables). 

Lemma: Each instance of a tautology is a theorem. Moreover, the derivation of this formula consists 

of either axioms (1-5) or of a formula which is an immediate consequence of the ones preceding it 

by modus ponens. 

Proof: Suppose the instance of a tautology being considered is yielded by substituting a set of 

formulae in place of the statement letters of a certain tautology. The completeness theorem (proven 

later) tells us that this tautology is derivable by a sequence of the form described above. Replace the 

statement letters in the tautological formulae in this derivation by whatever subformulae in order to 

obtain the corresponding formulae in the derivation for the instance, and the statement letters in 

the others by some arbitrary formula in order to obtain their corresponding formulae in the 

derivation for the instance. Then the derivation sequence for the instance becomes of the required 

form. 

Question: Show that the converse of the second assertion of the above lemma is true, i.e. all 

derivations of that form yield an instance of a tautology. 

Answer: Going back from the supplied derivation of the instance to the original derivation of the 

tautology will prove the converse. This can be done by reversing the substitution operation 

performed to prove the lemma. 

Any schemata which can generate all instances of tautologies can be called complete. 

A universally valid formula is not automatically an instance of a tautology. 

Lemma: Each instance of A6 and A7 is universally valid. 

Proof for A6: Follows from lemma 1.22 b), lemma 1.26 and definition of universal validity. 



Proof for A7: Utilize definition 1.21 iv) followed by lemma 1.22 b) on the condition. Then apply 

lemma 1.25 on the first formula in the condition followed by lemma 1.22 b) and the definition of 

universal validity and we are done. 

“Thus in order to construct a formal system in which all universally valid formulae may be derivable 

it is necessary to have as axioms formulae which are not instances of tautologies or rules other than 

modus ponens (or both).” 

2.2 

The Soundness Theorem: Suppose the union of a set of formulae with φ is a well-formed formula. 

Then, if φ is a theorem of (derivable from) the set, the set entails φ. 

Proof: Consider the minimal set which φ is a theorem of. We use induction on the length of the 

derivation for φ. If a formula in the derivation happens to be an axiom, it is universally valid and thus 

entailed by the set. If the formula happens to be a part of the set, it is trivially entailed by the set. 

What is left to be shown is that the remaining formulae in the derivation present by virtue of R1 or 

R2 are also entailed by the set, and then we are done. 

R1: Take a realization in which the set is satisfied for some assignment. By the induction hypothesis, 

the formulae which gives us the one in question are also satisfied and so by definition, the formula 

given by R1 is satisfied. Definition 1.33 enables us to wrap it up. 

R2: Suppose a formula in the derivation is yielded by R2 from a previous formula in the derivation by 

replacing the kth variable quantified. Since it does not occur free in the set, if the set is satisfied by 

any assignment in a realization, it is satisfied for all assignments yielded by replacing the kth element 

of this one by anything else (lemma 1.25); and so the antecedent formula is satisfied for all 

assignments yielded by replacing the kth element of this by anything else. This completes the proof. 

Definition: A set is consistent if it never implies both a formula and its negation. 

Corollary: The empty set is consistent. 

Proof: Application of theorem 2.6 to the contrary statement contradicts definition 1.21. 

Definition: A theory T in L is a set of sentences of L which is deductively closed. (For each sentence S, 

T entails S/S is derivable from/a theorem of T iff S is an element of T.) 

Lemma: A set is inconsistent iff it implies all well-formed formulae. 

Corollary: A theory is consistent iff it is unequal to the set of all sentences in L. 

The Deduction Theorem: If Σ U {φ, ψ} is a well-formed formula and Σ U {φ} I— ψ then Σ I—  φ--> ψ. 

Proof: If the condition is true, then either ψ is a theorem of Σ or whenever ψ is a theorem of some 

subset of Σ U {φ}, φ is a formula in this subset. In the first case, the result follows by modus ponens 

on A1 as a theorem of Σ. In the second case, we use induction on the derivation of ψ from the 

subset. The first two formula-types are easy enough. 

R1: Write out the induction hypothesis for the two formulae which need to be true (and so here, 

theorems of the set of the first two types) for applying modus ponens. The required formula then 

turns out to be an instance of A2. Apply R1 twice on this and receive the desired result. 

R2: Write out the induction hypothesis for the formula which needs to be true to apply 

generalization. R2 followed by A7 yields the result. 



Exercise 2.3, answers: 

a) We know that this statement is true for the notion of satisfiability. Now we only need to 

show that if a formula is satisfiable, it is consistent. Satisfiability means that there is a model 

for the formula, and the completeness theorem tells us that a set of formulae are consistent 

iff they have a model: In other words, iff all of them are satisfiable.  

b) In light of the above discovery, it suffices to prove this statement for satisfiability; that is, all 

the formulae in a set of well-formed formulae are satisfiable iff all the formulae in all its 

finite subsets are satisfiable. The proof for this is trivial. 

Question: If a formula is built up from a set of formulae using only propositional connectives, show 

that if each formula being in bi-implication with another formula is a theorem, the formula built up 

by substituting those other formulae in the original formula being in bi-implication with the original 

formula is a theorem. 

Answer: Note that in the proof for lemma 2.3, a variant of this was used: If the antecedent is true, 

the corresponding subformulae being in bi-implication with each other is a theorem. Taking it 

forward from here is easy enough (the soundness theorem allows us to take the truth-

value/satisfaction equivalence over to derivability). 

Exercise 2.5, answers: 

a) Follows from R2 (generalization) that if φ, then φ*. 

b) A constant will always be free for substitution for the free occurrence of a variable. 

Therefore, it follows from A6 that if φ, then φ’. 

c) First, we take A7 to be true. Then we know that there exists at least one consistent model 

wherein both φ and φ* are valid. Now, take A7 as false, i.e., take as our axiom ~A7. We still 

obtain the result of there being at least one consistent model wherein both the formulaes 

are valid. This tells us that A7 is independent of the rest of the axioms. 

d) Taking A6 to be false gives us a model where φ is valid but φ’ isn’t; taking it to be true gives 

us a model wherein both are true. Essentially, we obtain that there is at least one consistent 

model in both cases. We are therefore done. 

 

 

2.4 

Take a mapping f between the wff of the language and a co-domain which is a subset S of the wff 

such that φ is a theorem iff f(φ) is. Take another mapping h with the same domain and co-domain S’ 

such that φ<->h(φ) is a theorem. 

Semantically, the difference between the two properties is as follows: The first is a bi-implication 

between two theorems. The second is a theorem about a bi-implication. 

Lemma: The set of all the sentences in a language L is a possible subset S (i.e. there exists a map 

between it and Form(L) satisfying the above condition). A possible map consists of universally 

quantifying all the free variables in the formula. The bi-implication follows from R2/A6+R1. 

Question: Show that there exists a formula in the language for which the bi-implication between a 

formula and its universally quantified version is not a theorem. 



Answer: We need to show that the second property does not hold for the given map on sent(L). One 

way around, the implication will always hold by R2. To make it fail the other way round, keep a 

variable in the formula quantified existentially and so not free for any term. A6 can no longer be 

applied. 

The prenex normal form is defined. 

Theorem: The second (stronger) property holds for PNF(L). 

Proof: A set of six fairly easily derivable theorems are listed out which enable us to ‘pull out’ the 

quantifiers in a formula by interconversions and allow us to end up at the prenex normal form. The 

theorem is then proven. 

Exercise 2.6, answers: 

a) Convert the if-then in terms of negation and conjunction. Turn the universal to an existential 

using i) and reconvert to if-then. 

b) Convert the if-then in terms of negation and conjunction. Turn the existential to a universal 

using ii) and reconvert to if-then. 

Etc. 

Exercise 2.8: We need to show here that all quantifierless formulas are the disjunction of the 

conjunctions of a set of formulas which are either atomic or the negation of an atomic. Easy proof by 

induction on the length of the formula. The only case remaining: Negation outside. Pull it in. 

Exercise 2.9: Convert the if-then in terms of negation and conjunction. Change the existential to a 

universal. We obtain the negation of a contradiction. 

Exercise 2.10, answers: 

a) Replace c in each step of derivation of psi with exists (x). 

b) Refer to the bit in lemma 3.5. 

Exercise 2.11: One with all means all for one. All for one does not mean one with all. 

The Principle of Duality: We are given φ to be satisfied by some assignment in a realization M. φD 

obtained by interchanging conjunction with disjunction and universal quantifier with existential is 

satisfied by some assignment in a realization MD obtained by changing the relations of M such that 

each relation is replaced by its negation-space with respect to the domain. Furthermore, φ is a 

theorem iff ~ φD is a theorem. 

Proof: For #1, we use induction on the length of the formula. An atomic formula is merely a 

predicate between elements; we have no quantifiers or logical connectives. Say this is satisfied by 

some assignment in M. The negation-space predicate of this predicate is therefore not satisfied by 

this assignment. The negation of the negation-space predicate of this predicate is therefore satisfied. 

The proof is done for the atomic case. 

If φ is ~ψ: The statement holds for ψ by the induction hypothesis. However, since our statement is a 

biimplication between ψ and ~ψ, it can be inverted and stated for ~ψ without much ado. 

If φ is φ1 & φ2: Our transformed formula becomes ‘φ’1 or φ’2’; alternatively, ‘~(~ φ’1 & ~φ’2)’. φ1 and 

φ2 as well as their negations adhere to this statement, by the induction hypothesis. Definition 1.2, iii) 

finishes the job for us.  



If φ is a universally quantified formula, Axψ: Our transformed formula becomes Exψ’. By hypothesis, 

the statement holds for ψ; furthermore, it does so for any assignment on it. It is thus shown for this 

kind of formula as well.  

The second part can be similarly done. 

2.5 

LE are languages with the special, lone predicate of equality. Two extra axioms are added in its 

honor. 

These two extra axioms really only enforce the special predicate as an equivalence relation (the next 

lemma proves its symmetry and transitivity, and its reflexivity was an axiom; we obtain as a corollary 

that it is an equivalence relation). It can be conceivably interpreted as the special equivalence 

relation of equality; however, it can also be interpreted otherwise. 

Theorem: A9 holds in LE for all formulae, not just atomic ones. 

Proof: Induction on the length of the formula. 

“A consequence of theorem 2.18 is that any model for a theory in LE can be contracted to one in 

which = is interpreted by equality and the sets of sentences valid in the two models are precisely the 

same.” Let us see how this is done to gain clarity on this statement. 

Definition: The normal contraction of a realization in LE is a realization of the same type as the 

original one constructed by reidentifying each element of the realization (the elements in the 

domain, the elements in the predicates, the input-output of the functions, the distinguished 

elements) with the equivalence class induced by the equivalence relation =.  We add that a 

realization is called normal iff = is interpreted by equality. 

Theorem: The normal contraction of any realization in LE is normal. A formula is satisfied by an 

assignment in a realization if the formula produced by replacing the elements in its assignment with 

their equivalence classes is satisfied in the normal contraction. 

Proof: The first claim is straightforward; the equivalence classes of two related elements will always 

be equal. 

For the second claim: We show first by induction on the length of a term (proving it for elements, 

distinguished elements and functions) that the equivalence class of an assigned term in a realization 

equals the term given to the equivalence class of the same assignment in the normal realization. 

Then we use induction on the length of the formula to prove the claim. 

Corollary: A set of formulae has a model iff the set has a normal model. 

Definition: We define a formula which says ‘There is exactly one x such that P(x)’ in the language LE.  

Pulling the quantifiers out and applying A4 with theorem 2.18 on this definition solves exercise 2.14. 

Question: A definition is given. We must show that it translates to saying ‘There are exactly two x 

such that P(x)’. 

Answer: The definition tells us that there is one y which satisfies the formula and is unequal to x, and 

also that there exists an x which satisfies it. Observe that if something else were to satisfy it, it would 

just be equal to y, since all that is not x is given to be y. This completes the answer. 



Question: Consider a formula which says ‘There are exactly n x such that P(x)’ in the language. 

Construct now a sentence which is valid in a realization iff the domain of the realization has exactly n 

elements. 

Answer: Make a polynomial with n distinct roots and assert that there exist n x which satisfy the 

equation. Assert also that there does not exist anything which does not satisfy the equation. The 

sentence is made. 

“In a language with equality associated with a normal structure it is possible to express properties of 

the structure concerning the cardinality of some subsets of its domain.” 

Lemma: Take a realization M with cardinality n. For all cardinals greater than n, it is possible to 

construct a realization with that cardinality such that the realization is also a superstructure of M. 

Furthermore, a formula is satisfied by an assignment in M iff it is satisfied by the same assignment in 

this superstructure. 

The domain of the structure to the domain of the superstructure such that all the elements in the 

superstructure which are not in the structure are taken to some fixed element in the structure; the 

mapping is the identity for the rest. Ensure then that each element in the domain of the 

superstructure has the same properties as its image in the substructure. For a special superstructure 

like this, we may proceed to complete the proof by induction. 

Corollary: If a formula is satisfied by an assignment in some realization for a language, it is also 

satisfied by an assignment for a superstructure of this realization such that the superstructure has a 

cardinality greater than n for any n. 

Proof: Take the domain of the superstructure to be the union of the domain of the structure and a 

disjoin set X with a cardinality greater than n. Define a map and the other objects in the 

superstructure as before. Since no element in X is in A, for all b in X, b* is a0, and we are done. 

“Since there is no upper bound on the size of a model of a satisfiable formula there is no syntactic 

way of limiting the size of a class of structures of a certain kind.” 

Question: Show that any model of the formula (given) necessarily has infinite cardinality. 

Answer: The existential quantifier can only be extracted after the universal, and so will be deeper in 

than it. Therefore, the PNF will not be of the given form. 

The first and the last segments in this formula tell us that for all x, there exists some y which is 

necessarily unequal to x such that P(x,y). Putting z=x in the second segment, we obtain also that if 

P(x,y), then ~P(y,x), since otherwise we get P(x,x). It is now clear that the third segment gives us an 

infinitely cascading Russel-esque situation requiring an infinite domain.  

 

Points of interest/queries: 

1) Is the question of finding said minimal finite set a decidable one? Or is it undecidable? 

 

The Completeness Theorem:  A set of sentences is consistent iff it has a model. 

Proof: Recall that theorem 2.6 has already told us the converse of this statement. Now for the other 

side. 



A subset of sentences of L is complete if for all sentences in L, either the sentence or its negation is a 

theorem of the set. 

“The completeness…is, as stated here, entirely a syntactic property. However, the completeness 

theorem for the predicate calculus implies that the property may equally well be defined in terms of 

semantic concepts.” 

L’ is an alphabetic extension of L if L’ is obtained from L by adding new constant symbols only.  

Take a subset of sentences in L and a subset of sentences in L’ such that the subset in L is a subset of 

the subset in L’. Take a formula in L with precisely one free variable the existentially quantified 

version of which is a theorem of the subset in L. If L’ has a constant (sometimes called a Henkin 

constant) such that replacing the variable with that constant makes it a theorem of the subset of L’, 

the subset of L’ is a full extension of the subset of L. If a subset is its own full extension in L, it is 

called full. 

With these definitions at hand, here are the steps by which we perform the proof. 

1) Any consistent subset of sentences in L can be embedded in a consistent full-extension. 

2) Any consistent subset of sentences in L can be embedded in a complete consistent subset of 

sentences in L. 

3) Any consistent subset of sentences in L can be embedded in a subset of sentences in an 

alphabetic extension of L, L’ such that this subset is complete, consistent and full. 

4)  A complete consistent full subset of sentences in L’ has a model. 

5) Using 3) and 4): If a subset of sentences of L is consistent, it has a model. 

Lemma 3.5: There exists a consistent full-extension for a consistent subset of sentences in L. 

Proof: Define the set of all formulas with precisely one free variable whose existential quantified 

versions are theorems of the original subset. Now add to L fresh constants in one-one 

correspondence with the elements of this set. The union of the original subset and the elements of 

the defined set instantiated with the fresh constants is a full-extension of the original subset. Now to 

prove that this is consistent: 

Suppose not. This means that both some formula and its negation is a theorem with finitely long 

derivations respectively. For each, then, there is a finite subset of the second set in the union 

forming the full-extension, the union of which with the original subset yields the formulae and is 

thus inconsistent. Therefore, the negation of this very finite subset is also a theorem of their union. 

Applying the deduction theorem and a tautology, we obtain that the negation of this finite subset is 

a theorem of the original subset. 

But also, the existentially quantified version of each formula in the finite subset is also a theorem of 

the original subset. It is straightforward enough to show that this is contradicted by the negation of 

the finite subset being a theorem. We obtain a reductio ad absurdum the presumed consistency of 

the original subset, and we are done. 

Lemma 3.6: If the negation of a sentence is not a theorem of the union of a subset with that 

sentence, said union is consistent. 

Proof: By lemma 2.10, the subset is consistent from the if-condition. Suppose the union is 

inconsistent. Then the negation of the sentence is a theorem. Emulate the previous lemma to show 

that the negation of a sentence is a theorem also of the subset. This is a contradiction. 



1) is done. 

Lemma 3.7: There exists a complete and consistent extension to a consistent subset of sentences in 

a countable language L. 

Proof: An example is given, essentially. 

2) is done. 

Theorem: There exists a complete, full and consistent extension to a subset of sentences in a 

countable language L. 

Proof: Lemmas 3.5 and 3.7 are used alternatingly and countably often to construct countable 

languages and sentence sets with countable cardinality. Take the union of the languages and the 

union of the sets constructed by lemma 3.7 upon the sets constructed by lemma 3.5. This subset-

language pair have the desired properties. 

3) is done. 

Definition: The canonical structure determined by a subset of sentences in a language with at least 

one constant is as follows. 

a) Domain: Closed terms of L 

b) Relations: n-tuples of closed terms which are a theorem of the subset under some predicate 

c) Functions: n-ary functions which are in L 

d) Distinguished elements: Constants in L 

Theorem: A sentence is valid in the canonical structure for a consistent, complete and full subset of 

sentences iff the sentence is a theorem of said subset. 

Proof: By induction on the sentence length. Note that we must thus modify the induction hypothesis 

and can assume truth of the theorem only for sub-sentences. 

Start from assuming the if. The atomic case follows from the definitions. For negation: Use definition 

1.21, the induction hypothesis and the consistency + completeness of the subset. For conjunction: 

Definition 1.21, the induction hypothesis and A4. 

For the final case: First apply definition 1.21 and the induction hypothesis, followed by A6. (The 

sentence not being a theorem of the subset implies its negation is, which contradicts our assumption 

post application of theorem 2.15) 

4) is done. 

Theorem: Any consistent subset of sentences in a countable language has a model. 

Proof: Theorem 3.8 tells us that there is an alphabetical extension of this language which has a 

complete consistent full subset of sentences which extends the original subset. Theorem 3.10 tells 

us that this extension has a model. The reduct of this model to the original language is the required 

model. 

The Compactness Theorem: A subset of sentences in a countable language has a model iff every 

finite subset of it has a model. (Proven by contradiction.) 

 

 



3.3 

For languages with equality, if a set has a model, then it also has a normal model. 

Another canonical structure is defined, but with one modification: The term is replaced by its 

equivalence class under the equality relation. 

Theorem: In a countable language with equality, a subset is consistent iff it has a (normal) model. 

The language made to give our subset a model was made using a countable sequence of countable 

languages by adjoining at each stage a countable set of new constants. Thus, the final language must 

also be countable. 

The previous theorem can now be strengthened in the following way: In a countable language with 

equality, a subset of sentences is consistent iff it has a countable model. 

Another restating of the completeness theorem: 

“A countable consistent set of sentences is satisfiable in a subset of the natural numbers (with 

suitable relations, functions and individual constants).” 

3.4 

In order to extend lemma 3.7 to languages with a cardinality greater than that of N, the axiom of 

choice must be assumed: “Any set can be well ordered.” 

Lemma 3.17: “Suppose k is an infinite cardinal. Then k = k*(aleph-naught) = k*k.” 

Refer elsewhere for a proof of the above two. 

Corollary: If a first-order language L has cardinality k, then the set of sentences of L has cardinality k. 

Lemma 3.19: There exists a complete and consistent extension to a consistent subset of sentences in 

any first-order language L. 

Proof: The set of sentences of L can be well-ordered. Transfinite induction is used to complete the 

proof in analogy to lemma 3.7’s proof. 

Question: Prove the above by applying Zorn’s lemma to the partially ordered set of consistent 

extensions of the subset in L. 

Answer: The solution lies in the fact that each sentence not in the subset will be the maximal 

element for some partially ordered set. We pick them out in this way and add them if its negation is 

not already in the subset. 

The remainder of the completeness theorem’s proof is unchanged, since that was the only place 

where L’s countability was directly exploited. 

The Generalized Completeness Theorem: If a subset of sentences in a language (or a language with 

equality) with cardinality k is consistent, then the subset has a model (or a normal model) with 

cardinality no greater than k. 

Theorem: A countable consistent set of quantifier-free formulae of L is satisfiable in a countable 

structure. 



Proof: Ultimately similar to the proof of theorem 3.10 with slight differences: We take in the domain 

of our structure not only closed terms but all terms, and the last step of induction can be eliminated. 

(Also note that completeness is not formally defined for formulae.) 

Question: Let there be a quantifier-free formula with h terms and sub-terms. Show that if it is 

satisfiable, then it is satisfiable in a structure with not more than h elements. 

Answer: Refer to theorem 1.31. 

3.5 

Theorem: If a subset of sentences in a first-order language with equality has arbitrarily large finite 

models, it has an infinite model. 

Proof: Define an alphabetical extension of the language by adjoining a countably infinite set of 

distinct new constants. Consider a subset of sentences of this new language which is the union of 

our original subset with the set of all sentences of the given form (wherein each sentence involves 

two of the new constants adjoined). Consider now a finite subset of this subset. 

This finite subset is the union of some subset of our original subset and a finite set of sentences of 

the form given above—say, p of those sentences. 

By our hypothesis, the original subset has a model with more than 2p elements. Expand this model 

to a realization for the alphabetical extension by adjoining distinct new constants corresponding to 

the (not more than) 2p new constants occurring in the finite subset. This realization would then 

satisfy that finite subset. 

Now applying the compactness theorem: Since an arbitrary finite subset has a model, so must the 

subset of the alphabetical extension; furthermore, the model of the infinite subset must have an 

infinite domain. 

The reduct of this is the required model. 

Corollary: There is no set of sentences such that it is satisfied by a model iff that model is finite. 

A notable contrast to the result of exercise 2.16! “It is possible to characterize (in a language with 

equality) all (normal) structures with a given fixed cardinality, or indeed those structures with 

domains of less than some fixed finite cardinality. Finiteness itself cannot be characterized in the 

same way even when infinite sets of sentences are considered.” 

Theorem: Let a first-order language with equality have a unary function, two binary functions and 

the constant ‘0’. Consider a realization of it with the domain N, the unary function interpreted as 

successor, the binary ones as multiplication and division and ‘0’ being zero. 

Consider the subset of sentences in the language which are valid in this realization. There exists a 

structure which is not isomorphic to the original realization such that this subset is valid in it. 

Proof: Consider the alphabetical extension of the language obtained by adding a single new constant 

‘c’. Define a new set of sentences which is the union of the original set and the set of sentences 

which are of the form ~c=n and n is the nth successor of 0. 

Take an arbitrary finite subset of this new set. There then exists a k such that for all m not less than it 

the sentence ~c=m is not an element of this subset. The subset is then valid in a realization with 

domain up to k. By the compactness theorem, the new set of sentences defined has a model. 



Suppose now that the reduct of this model to the original language is isomorphic to the original 

realization. This implies the existence of an isomorphism going from the latter to the former. So, for 

some integer n, f(n) = c. 

But in the reduct, ~Ex=n[c] is valid and in the original model, Ex=n[n] is valid. This gives us the 

contradiction we need. 

(The proof is based on the fact that c ends up being a ‘transfinite’ number.) 

Definition: The structure <M, R> where R is a binary relation on M is a graph if R is irreflexive and 

symmetric on M. If a, b in M such that aRb then a is connected to b. The graph is said to be k-

colorable if there is a partition of M into not more than k subsets such that no two connected 

elements are in the same subset. 

Theorem: A graph is k-colorable iff every finite substructure of it is k-colorable. 

Proof: It is obvious that if the graph itself is k-colorable, so is any finite substructure of it. Now for 

the converse. 

Let us consider a first-order language of which this graph is a realization. Let the language have the 

required number of constants to match the graph’s domain along with k unary predicates. Consider 

now the following set of sentences in the language (as defined). This set has the same cardinality as 

M only if M is infinite; the set may exclude finitely many elements in order to satisfy its conditions. 

Suppose every finite subgraph possesses the property in question. Consider a finite subset of the set 

of sentences defined above and the finite subset of the realization with a reduced domain 

corresponding to the sentence subset. By our assumption, this realization (with the original set of 

relations restricted to those in its domain) is k-colorable. 

Consider the k disjoint subsets given to us by our coloring, and take some constant a in the reduced 

realization which acts as the interpretation for all the constants in the language which have nothing 

to correspond to in the realization. 

The subset of sentences is modelled by the structure (as defined). Since the subset itself was 

arbitrary, by the compactness theorem, there exists a model for the original set of sentences. 

From exercise 1.22 a), it follows that any substructure of this model is also a model for the set. Now, 

consider the purely relational version of the substructure whose domain is equal to the distinguished 

elements of the original. This is isomorphic to the original graph. 

Define k disjoint subsets of the graph by an isomorphism: An element belongs to a subset (i) iff the 

corresponding constant in the language is an element of the intersection of the substructure’s 

domain and the corresponding predicate (i). 

From the third condition for the set of sentences, each element belongs to at least one subset. From 

the fourth, this subset is unique for the element. From the fifth, we obtain that two connected 

elements must be in two distinct subsets. 

Hence, proved. 

Question: Show that no finite set of sentences exists in a first-order language with equality such that 

it is satisfied in a realization iff the domain of the realization is infinite. 



Answer: We need to show that every set of sentences either has a finite model, or that there exists 

an infinite model which fails to satisfy it. 

Suppose it has no finite model. If all infinite models satisfy it, take its negation, which would then be 

satisfied iff the model is finite. We have a contradiction to corollary 3.23. 

Hence, proved. 

Question: Let A, B be two theories in a first-order language such for any realization of the language, 

one theory is valid iff the other is not. Show that both theories are finitely axiomatizable. 

Answer: The union of the two theories has no model. Therefore, by the compactness theorem, no 

finite subtheory of the union has a model. Let X be a finite subtheory of A and Y of B. The union of X 

and Y has no model. Therefore, any structure is a model of X iff it is not a model of Y. If it is not a 

model of Y, it is not a model of B. Therefore, any model of X is a model of A. Since X was finite, it 

follows that A is finitely axiomatizable (and similarly, B). 

Herbrand’s theorem: A closed existential formula A is universally valid iff there is a universally valid 

formula which is a disjunction of instantiations of A. 

Significance: An existential formula is universally valid in first-order logic if the formula obtained by 

the disjunction of all its instantiations is universally valid in zero-order logic. 

Question: Show using the compactness theorem that any partially ordered set can be totally ordered 

by somehow extending the former. 

Answer: Induction followed by compactness. 

3.6 

A ‘truth assignment’ is defined, and on its heels, so is ‘tautology’. 

An axiomatization is given for propositional calculus. 

Propositional consistency and propositional completeness are defined. A set of propositional 

formulas has a model if there exists a truth assignment which gives all its constituent formulas a T. 

Theorem: A set of formulae in a propositional language is consistent iff it has a model. 

Proof: The first way round—the soundness theorem’s equivalent—is straightforward enough. If a 

formula is a theorem of a set, we can show by induction on the length of the derivation (using the 

first two properties of the axiomatization) that a model for the set is also a model for the formula. It 

follows that a set of sentences with a model must be consistent. Now for the other way round. 

Once again, we make a complete consistent set from the given consistent set. Give this a canonical 

truth assignment: A proposition is T iff it is a theorem. The assignment is extended in the usual way 

to the rest of the language’s formulae. We can then show that a formula is T iff it is a theorem of the 

set. 

Corollary 3.29: A is complete/The theorems of A are precisely the tautologies; any set of formulae in 

the language has a model iff all its finite subsets have a model. 

 

 



 

4.1 

The Downward Löwenheim-Skolem Theorem: If a subset of sentences with infinite cardinality k in a 

first-order language with equality has a model, then the subset has a model of cardinality not 

greater than k. 

Proof: If the subset has a model, it is consistent. Only if the cardinality of the language is also k can 

the subset have infinite cardinality k. The final result follows from theorem 3.20. 

A special case of the above theorem which may be proven without assuming the axiom of choice: If 

the subset of sentences is countable and satisfiable, then it has a countable model. 

The Skolem paradox: It is possible to construct a consistent theory T in a countable first-order 

language L in which the theorem “The set of real numbers is uncountable” is derivable. At the same 

time, the above theorem implies that T has a countable model. 

Resolution: This simply means that there is no function in the model which is a bijection between N 

and R. “The elements in the domain representing the reals may indeed be countable; no 

contradiction occurs because the one-one function from it onto N will be outside the model.” 

The Upward Löwenheim-Skolem Theorem: If in a first-order language with equality of cardinality k 

there exists a subset of sentences with an infinite model, then the subset has a model of cardinality 

p for each infinite p not less than k. 

Proof: Define an alphabetical extension (with cardinality p) of the language by adjoining the required 

set of distinct new constants. Consider a subset of sentences of this new language which is the union 

of our original subset with the set of all sentences of the given form (wherein each sentence involves 

two of the new constants adjoined). Consider now a finite subset of this subset.the  

By hypothesis, our original subset has some infinite model. This model can in turn be expanded to a 

realization for the language’s alphabetical extension. There then exists a model for our finite subset. 

By the compactness theorem, the set of sentences formed by the union also has a model. 

Since the set of constants adjoined to the extension has cardinality p, the realization has cardinality 

not less than p. But also, by the downward Löwenheim-Skolem theorem, the set of sentences 

formed by the union (with cardinality p) has a model of cardinality not greater than p. This implies 

that the model has cardinality exactly p. Since the original sentence is also valid in this model, the 

proof is complete.  

“Just as we may infer from theorem 3.22 that no set of sentences of a first-order language (with 

equality) is valid in precisely the finite realizations of the language, so we may infer from [this 

theorem] that there is no set of sentences characterizing the realizations of a given cardinality.” 

The upshot of the DLST is relativization. The upshot of the ULST is the inability to characterize a given 

infinity. 

4.2 

A model-theoretic characterization of completeness is provided. 

One realization is elementarily equivalent to another iff for all sentences in the given first-order 

language, the satisfaction of the sentence in the first realization implies its satisfaction in the second. 



This is an equivalence relation (for any realization in the language, a given sentence or its negation 

will be satisfied). Note that this property can hold between two non-isomorphic structures. (That it 

must hold for isomorphic ones is given by ex 1.15.) 

Question: If there exists a realization of L with cardinality K not less than w, show that for each 

infinite cardinality there exists a realization of cardinality not less than it which is elementarily 

equivalent to the original realization. 

Answer: For each infinite cardinality, there is a consistent model. By the completeness theorem, this 

means that this is a model for a complete set of sentences. By ULST, this set of sentences has a 

model of each infinite cardinality greater than this one; furthermore, by lemma 4.5, all these models 

will be elementarily equivalent. 

Lemma: A subset of sentences in a first-order language is complete iff all its models are elementarily 

equivalent. 

Proof: Either an arbitrary sentence or its negation is a theorem of the subset. By the completeness 

theorem, one of the two is a logical consequence of the subset. So, for any model of the subset, 

either the sentence is satisfied (in the first case) or its negation is (in the second case). The converse 

is straightforward. 

A consistent theory in a first-order language without equality is categorical if all its models are 

isomorphic. The theory is K-categorical if it has a model of cardinal K, and if any two models of 

cardinal K are isomorphic. 

Clearly, a categorical theory can only have finite models (under threat of violating the ULST). Since 

isomorphic structures are always elementarily equivalent, it follows trivially that categorical theories 

are always complete. 

A partial converse lemma: In a first-order language without equality, a complete theory with a finite 

model is categorical. 

Proof: Let A be the given finite model (with n elements in its domain) of the complete theory. The 

sentence asserting that there are n elements in its domain is satisfied in it. Since the theory is 

complete, this sentence is an element of it. It follows that any other model (say, B) of the theory 

must also have n elements in its domain. By lemma 4.5, A and B are elementarily equivalent. What 

remains to be shown is that A and B are isomorphic. 

Construct a finite sequence of alphabetical extensions of L. We show by induction that the 

corresponding sequence of models (which are obtained by declaring suitably many distinguished 

elements from the domain) are elementarily equivalent. Finally, we construct an isomorphism 

between the two. 

The base step of the induction is already given to us to be true (A ≡ B). We assume truth for some r 

and take the r+1th alphabetical extension. Suppose the models for this next extension are not 

elementarily equivalent. Fixing the fresh distinguished element in A: So, for each element in the 

domain of B (excluding those already selected as distinguished elements), when it is included in the 

next iteration of B’s distinguished elements, there exists a sentence which is satisfied in A and not in 

B. 

Using this, a sentence is constructed in the previous language of the sequence which is satisfied in 

(the previous iteration of) A but not in B. Thus, we prove that A and B are elementarily equivalent 



throughout the sequence. The remaining part of the proof, consisting of explicitly defining an 

isomorphism, is simple enough. 

Note that this proof works only when A and B are finite (thus failing for the elementarily equivalent 

but non-isomorphic models in theorem 3.25.) This is because the formula defined to bring about a 

contradiction must be finite (and consequently, the domain of B must be finite). 

Question: Show that if a set of sentences in a language with finitely many non-logical symbols is 

categorical, then there exists a finite subset of it such that all the sentences of the original set are 

theorems of the subset. 

Answer: The set of sentences is in a language with finitely many non-logical symbols, but with no 

restriction on the number of variables, may yet be infinitely many. 

But since it is categorical, follows that it has a finite model. Now we have a model of both finite 

domain and finitely many theorems, since the number of non-logical symbols remain only finitely 

many. A corresponding finite set of sentences can now be constructed. 

Cantor’s dense order theorem: DLO is aleph naught categorical. 

Proof: We show that an order-preserving isomorphism exists between any two arbitrary countable 

models. 

Proven by induction on a sequence of finite subsets of A and B with an isomorphism between them 

(An, Bn, hn). Let the first triplet be the null set each and assume the nth one has been defined. 

If the nth element of A is an element of An, the n+1th terms in the sequence remains the same. If not, 

choose An+1 as the union of An with the nth element of A and choose some fresh element of B (to set 

as its image) to be added to get Bn+1. 

Similarly, check if the nth element of B is an element of Bn and make the construction. 

By induction, the union of all the isomorphisms gives us the required function. 

Lemma: The DLO of reals is non-isomorphic with the DLO substructure obtained by deleting 0 from 

it. 

Proof: Let us assume there exists an order-preserving isomorphism h going from the former to the 

latter. 

Consider the sequence pn in A which is the pre-image to the sequence 1/n in B. Since order is 

preserved, both sequences are decreasing with increasing n, and since R is complete, {pn} converges 

to some p, and h(p) < 0. 

There exists an r such that h(p) < r < 0 < h(pn) = 1/n for every n. 

But since p is the greatest lower bound of the sequence, h-1(r) < p. This contradicts h being order-

preserving. 

Thus, no such h can exist. 

Corollary: DLO is not categorical for the cardinality of reals. 

Theorem: If a theory is categorical for some uncountable cardinality, it is categorical for each 

uncountable cardinality. 



The proof has been omitted here. 

Theorem: A theory in a language of cardinality k with no finite models is complete if it is categorical 

for some infinite cardinality not less than k. 

Proof: Suppose not, i.e. T is incomplete but categorical for some infinite cardinality p not less than k. 

Then there exists a sentence in L such that neither it nor its negation is a theorem of T. By lemma 

3.6, the union of T with either the sentence or its negation is consistent. Models exist for each of 

these extensions of T, neither of which are finite (by hypothesis); thus, models exist of cardinality p 

(by ULST). But since T is p-categorical, both the models are isomorphic. 

But isomorphic structures satisfy precisely the same sentences. We have the required contradiction. 

Corollary: (Q, >) and (R, >) are elementary equivalent. (Both are models for DLO, which is a complete 

theory.) 

An explicit example is given of a theory which is not k-categorical for any infinite cardinality k. 

4.3 

Definition: A substructure is an elementary substructure of its superstructure if the satisfaction of a 

given formula under a certain assignment in the substructure implies its satisfaction in the 

superstructure. The superstructure is its elementary extension. 

Definition: An embedding between the substructure and the superstructure is an elementary 

embedding if the range is an elementary substructure of the co-domain. If such an embedding exists, 

the substructure is said to be elementarily embeddable in the superstructure. 

Lemma: Let f: AB be a map between the two structures. 

a) f is an embedding iff for every atomic or negated atomic formula in L, its satisfaction by 

an assignment a in A implies its satisfaction by the assignment f(a) in B. 

b) f is an elementary embedding iff for every formula in L, its satisfaction by an assignment 

a in A implies its satisfaction by the assignment f(a) in B. 

Proof: The proof of a) is left as an exercise. Now for b): Suppose f is an elementary embedding. Since 

the domain and the range are isomorphic, ex 1.15’s result combined with the definition of 

elementary substructure allows us to conclude the result we want. Now for the other way round. 

Suppose the satisfaction by an assignment a in A implies its satisfaction by the assignment f(a) in B. 

Using this assumption, it is established that f is an isomorphism; subsequently, it follows from 

definition that its range is an elementary substructure of the co-domain, and the proof is complete. 

Even when a substructure turns out to be elementarily equivalent to its superstructure, three 

possibilities remain: The former is an elementary substructure of the latter; the former is not and 

elementary substructure of the latter but an elementary embedding exists between the two; neither 

is the former an elementary substructure of the latter nor does an elementary embedding exist 

between the two. An example is provided of each case. 

Note regarding example 2: The given structures are elementarily equivalent because we have not 

introduced any constants into our language (and so one cannot obtain a ‘sentence’ by replacing x 

with 1.) 



Definition: Define an alphabetical extension of L obtained by adjoining to L a new individual constant 

for each element in the domain of a realization for it. The new structure corresponding to the 

expanded language (called here the ‘expanded structure’) has an intended interpretation for each 

constant. 

Lemma: Given f: AB, the mapping is an elementary embedding between two structures iff the 

expanded structure of the domain is elementarily equivalent to the expanded structure of the co-

domain. 

Proof: The first way round: Use lemma 4.21, b) on the assumption and apply lemma 1.26 on the 

formulae (after appropriately associating each missing constant in the smaller language with a 

variable), and the proof is done. The converse is similarly proven. 

Corollary: A substructure is an elementary substructure of its superstructure iff the expanded 

structures of the two (in the same domain) are elementarily equivalent. 

Definition: A characterization of the number of alternations in quantifiers in the PNF of a formula is 

defined. 

A way to procure all the wff of a language on the basis of this definition is given. 

Definition: A substructure is an n-elementary substructure of its superstructure if the elementary 

substructure condition holds specifically for all the formulae of universal-PNF number n (as defined 

previously). 

Definitions: The open diagram of a realization of a language is the set of all formulae in its extended 

structure such that the formula is satisfied in it, and is either an atomic sentence or its negation in 

the extended language. 

The complete diagram of the realization is the set of all sentences in its extended structure such that 

the sentence (which must be an element of the set of all sentences in the extended language) is 

satisfied in it. 

Evidently, the open diagram of a model is a subset of its complete diagram, and the latter is 

complete (being the set of all true sentences in a structure). 


