On the Origin of Symmetry

Symplectic geometry & Noether's theorem

Aditya Dwarkesh

DMS Day 2024

- 1. Manifolds
- 2. Symplectic Geometry
- 3. Dynamics
- 4. Conservation & Symmetry

The Concept of a Manifold

Locally Euclidean

Locally Euclidean

Locally Euclidean

Structures on Manifolds

On \mathbb{R}^2 : $\omega = dxdy$

On \mathbb{R}^2 : $\omega = dxdy$

On S^2 : $\omega = dhd\theta$

Phase space: 3 position coordinates + 3 momentum coordinates + dynamical laws Phase space: 3 position coordinates + 3 momentum coordinates + dynamical laws Generalization from $(\mathbb{R}^6)^n$: A smooth manifold M, with some additional structure encoding dynamics.

Phase space: 3 position coordinates + 3 momentum coordinates + dynamical laws Generalization from $(\mathbb{R}^6)^n$: A smooth manifold M, with some additional structure encoding dynamics.

Question: How does a symplectic form produce dynamical laws on the manifold?

Dynamics

Vector fields

Vector fields

Flow

Flow

Through the following equation, a given function $f: M \to \mathbb{R}$ is associated to a vector field X_f :

Through the following equation, a given function $f: M \to \mathbb{R}$ is associated to a vector field X_f :

$$i_{X_f}(\omega) + df = 0$$

Hamiltonian vector field: Example

Height function.

Hamiltonian vector field: Example

Height function.

Hamiltonian vector field of the height function.

Function.

Function.

Hamiltonian vector field.

Function.

Integral curve.

Hamiltonian vector field.

Function.

Integral curve.

Hamiltonian vector field.

Flow.

Question: How does a symplectic form produce dynamical laws on the manifold?

Question: How does a symplectic form produce dynamical laws on the manifold?

Answer: Given a Hamiltonian function f, the symplectic form ω associates to it a vector field X_{f} , whose flow describes the time-evolution of the system.

Noether's Theorem

$\cdot \frac{df}{dt} = 0$ (Conserved quantity)

$\cdot \frac{df}{dt} = 0$ (Conserved quantity)

• $\{f, H\} = 0$ (Poisson bracket vanishes)

- $\cdot \frac{df}{dt} = 0$ (Conserved quantity)
- $\{f, H\} = 0$ (Poisson bracket vanishes)
- $f \circ \gamma_H = C$ (Constant on integral curves)

- (M, ω, H): Hamiltonian system
- + V: Vector field with flow ho_{t}

- (M, ω, H): Hamiltonian system
- V: Vector field with flow ho_t

Two things must remain unchanged under the flow's deformation:

- (M, ω, H): Hamiltonian system
- + V: Vector field with flow ho_t

Two things must remain unchanged under the flow's deformation:

$$\mathcal{L}_V \omega = 0$$

- (M, ω, H): Hamiltonian system
- + V: Vector field with flow ho_t

Two things must remain unchanged under the flow's deformation:

$$\mathcal{L}_V \omega = 0$$

$$H = H \circ \rho_t$$

Noether's theorem

Theorem: Let (M, ω, H) be a Hamiltonian system. If f is a conserved quantity, its Hamiltonian vector field is a symmetry.

Emmy Noether, 1882-1935.

Thank you!

