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Introduction

Is it possible to formalize all of arithmetic in such a way that every mathematical

statement is either provable or disprovable in a finite, mechanical sequence of steps?

Such a formalizationwas the ambitious goal ofWhitehead&Russell’s PrincipiaMathe-

matica. Unfortunately for them, in 1931, Kurt Gödel proved and published a theorem

which stated that such a system cannot exist.

Gödel went on to explicitly give an example of a mathematical statement which is

neither provable nor disprovable in the relevant system. His two theorems are often

considered to be the deepest results yet in the foundations of mathematics.

Indeed, even if one were to try to ‘force’ the statement in by adding it as an axiom of

the system, it was shown that one could always construct a new ”Gödel statement”

for the fresh system. The difficulty was a fundamental one.

Background

First-order language: A first-order language is a set of symbols– variables, constants,

predicates, functions, logical connectives and the universal quantifier. Recursive def-

initions are easy to give for ‘meaningful’ strings of these symbols, namelywell-formed

formulae. A well-formed formulae with no free variable is called a sentence.

First-order formal system: A first-order formal system includes a set of axioms (all

well-formed formulae of a certain form) and a set of rules of deduction. A finite se-

quence of well-formed formulae starting from φ1 and ending at φ2 is a derivation of

the latter from the former if each of these steps is either an axiom or follows from a

rule of deduction.

Theory: A theory is a deductively closed set of sentences.

Completeness: Afirst-order theory is complete if for every sentence σ, either σ or¬σ
is provable in it.

Consistency: A first-order theory is consistent if for no formula φ, both φ and ¬φ are

provable in it.

For the purpose of this theorem, the first order theory of interest is PeanoArithmetic.

ω-consistency: A set of sentences is said to be ω-consistent if for all formulae of

type φ(x) with one free variable, it is not the case that both ¬∀¬φ(x) and ¬φ(n) for
all naturals n.

Recursive functions: A function from Nn to N is said to be recursive if it is a constant,

the successor, the projection, a composition or minimization or primitive recursion of

recursive functions.

Representability: A function f : Nn → N is said to be representable in a theory T
iff there exists a formula A(x1, . . . , xn+1) such that T ` ∀xA(a1, . . . , an, x) ↔ (x = b)
whenever f (a1, . . . , an) = b.

The first theorem

1. Every recursive relation is representable in T.

2. Every formula in T can be arithmetized, such that for each formula corresponds a

unique integer. This can be done by encoding each symbol as a unique integer

and then a sequence of symbols via pa1
1 ∗ ...pan

n , where pi is the ith prime and ai is

the code of the ith symbol. We call the integer corresponding to a formula its

Gödel number, and denote it (for a formula φ) by pφq.

3. PT defined in the following manner is recursive (and thus representable in T): (x,

y) ∈ PT if and only if the formula associated with the integer y constitutes a

proof for the formula associated with the integer x. The representation of this

relation in T is called the “provability predicate”, and shall be denoted by PT.

4. Let F (x) be a formula with one free variable. There exists a sentence φ such that

φ ↔ F (pφq).
5. Let BT(x) be the formula ∃pPT(x,p). Informally, BT (x) reads ‘There exists a

proof of x.’ By the above, there exists a statement G such that

T ` G ↔ ¬BT(pG q). We claim that neither G nor ¬G are provable in T.

6. Suppose G . G =⇒ BT(pG q), by the Hilbert-Bernays theorems (informally, this

says that if G is provable, then ‘G is provable’ is provable). But also, ¬BT(pG q),
contradicting the ω-consistency of T.

7. Suppose ¬G . We will use another Hilbert-Bernays theorem, and call it HB (2):

BT(pA → Bq) → (BT(pAq) → BT(pBq)). Informally, this says that if A =⇒ B is

provable, then ‘A is provable’ implies ‘B is provable’.

Finally, let ⊥ stand for your favourite contradiction. We will show that our

assumption entails the provability of a contradiction in T, contradicting its

ω-consistency.

1. T ` BT(pG q) by G being a fixed point

2. T ` BT(p¬G q) Hilbert-Bernays

3. T ` ¬G → (G →⊥) Tautology

4. T ` BT(p¬G → (G →⊥)q) Hilbert-Bernays

5. T ` BT(p¬G q) → BT(pG →⊥q)) HB (2) and Modus Ponens

6. T ` BT(pG →⊥q) Modus Ponens

7. T ` BT(pG q) → BT(p⊥q) HB (2)

8. T ` BT(p⊥q) Modus Ponens

Informally, G may be said to express the Liar’s Paradox: It reads, ‘This sentence is true

but unprovable.’

Aword of caution

Gödel’s theorems do not, in fact, hold for all formal systems. Tarski’s axiomatization

of elementary Euclidean geometry is an example of a formal system which is both

consistent and complete!

The catch is that our theory needs to be sufficiently complex, in some appropriate

sense, for the theorems to apply. In particular, every recursive relation must be

representable in it. This is not true of Tarski’s system; on the other hand, a formal

first-order system capable of doing reasonably interesting arithmetic will satisfy

this.

Nor is it true of second-order or other such variantswhere quantification over pred-

icates is allowed. Using second-order axiomatization, a complete, consistent and

decidable theory of the real closed fields was given by Tarski.

The second theorem

Gödel’s second theorem states that no consistent extension of arithmetic can prove

its own consistency. Its proof is based on Löb’s theorem, which states that if

BT(pσq) → σ, then σ (for any sentence σ).
Assuming this, let T be any recursively axiomatized extension of Peano arithmetic.

Note thatBT(p⊥q) → ⊥ is equivalent to ¬BT(p⊥q), a sentencewhich expresses the
consistency of the theory. Now, by Löb’s theorem, if BT(p⊥q) → ⊥, then ⊥. Hence,

we must have that if ¬BT(p⊥q), then ⊥. The contrapositive of this is the required

statement.

Following is a proof of Löb’s theorem:

1. T ` B ↔ (BT(pBq) → σ)
2. T ` BT(pB → (BT(pBq) → σ)q)
3. T ` BT(pBq) → BT(pBT(pBq) → σ)q)
4. T ` BT(pBq) → (BT(pBT(pBq)q) → BT(pσq))
5. T ` BT(pBq) → BT(pBT(pBq)q)
6. T ` (BT(pBq) → BT(pBT(pBq)q)) → (BT(pBq) → BT(pσq))
7. T ` BT(pBq) → BT(pσq)
8. T ` BT(pσq) → σ

9. T ` (BT(pσq) → σ) → (BT(pBq) → (BT(pσq) → σ))
10. T ` BT(pBq) → (BT(pσq) → σ)
11. T ` (BT(pBq) → BT(pσq)) → (BT(pBq) → σ)
12. T ` BT(pBq) → σ

13. T ` B

14. T ` BT(pBq)
15. T ` σ

Aftermath

Hilbert’s formalist program for mathematics was an ambitious project to axioma-

tize mathematics such that it retained three main characteristics: (1) finiteness–all

results about infinitary objects (like irrationals) must be proven using formalism of

finitary objects, (2) completeness–all true mathematical statements are provable, (3)

consistency–no contradiction is obtainable in the formalism. Rather than think of

strange mathematical objects as ‘real’, he decided to only commit to ‘finitary’ objects

and the rest are to be thought of as meaningless symbols to be jumbled around ac-

cording to our choice of rules or formalism.

Gödel’s theorems showed that completeness is not possible with just finitary means

and that consistency cannot be proven by the formalism. It delivered a fatal blow to

Hilbert’s optimistic vision.
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