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Feature Article

Introduction
Formal mathematical systems underlie most 
of modern mathematics. The 20th century 
and the various programs of formalizing 
previous mathematics brought about interest in 
understanding the possibility of formalization 
in principle. Frege and Russell made large 
leaps forward; they envisioned new foundations 
through predicate logic. Others sought other 
foundations. The question as to the scope of 
this formalization was an open question which 
eventually culminates in the fracturing of the 
optimism of early 20th century goals of complete 
and comprehensive formalization through Gödel’s 
Incompleteness Theorems. The goal was to 
make a system where all statements are either 
provable or disprovable and no two contradictory 
statements could be proven. Gödel showed this to 
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be impossible for sufficiently complicated formal 
systems.

Gödel’s theorems are definitively the most 
major result in the foundations of mathematics. 
They are very general and incredibly profound 
even in the limited scope that one may afford 
the theorems in context of formal systems. Gödel 
was the first person ever to claim that certain 
statements of mathematics exist which cannot 
be proved or disproved (in the relevant systems). 
In fact, the second incompleteness theorem was 
the first ever proof that there was a particular 
statement that was ‘independent’ of the axioms 
of the foundations of mathematics, no matter 
how many extensions one makes; the particular 
statement being the consistency of the system 
itself. This was a big step for mathematics. 
Authors shall see exactly why in the course of 
this article.
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Gödel first publicly talked about his 
incompleteness results on September 7, 1930, 
in a discussion in Konigsberg in the Second 
Conference on the Epistemology of the Exact 
Sciences. He had shown Carnap the same on 
the 26th of August of the same year. Gödel was 
present at the conference to present a short talk 
on his dissertation—the proof of the completeness 
of first-order logic. In the discussion between 
Scholz, Heyting, Carnap, von Neumann, and 
Hahn—after the talks—Gödel mentions how 
it is possible to prove ~(for all) x: not-F(x) in 
classical arithmetic even if one realizes through 
other considerations that all finite numbers have 
the property not-F. This is related to the idea of 
w-consistency. Further he says:

“One can (assuming the consistency of classical 
mathematics) even give examples of propositions 
(and indeed, of such of the type of Goldbach or 
Fermat) which are really contentually true but 
are unprovable in the formal system of classical 
mathematics. Therefore, if one adjoins the 
negation of such a proposition to the axioms of 
classical mathematics, one obtains a consistent 
system in which a contentually false propositionis 
provable.” (Gödel, 1930)

In this article, authors survey the wide-
ranging uses of the incompleteness theorems 
after an explanation of their origins. The 
incompleteness theorems have had a rich history 
consisting of heated debates and extravagant 
uses (and as is often said, abuses). Firstly, 
authors discuss the criticisms that the theorems 
received followed by their subsequent acceptance 
and eventual fossilization in logic text books. 
Of these criticisms, Wittgenstein’s is of special 
interest. Authors also discuss the applications 
of the theorems in logic and metamathematics 
in the form of Tarski’s undefinability theorem, 
Church’s undecidability theorem, Hilbert’s second 
and tenth problems. The various positions in the 
philosophy of mathematics all underwent some 
transformation in light of the incompleteness 
theorems. This is another point of authors’ 
interest. More recently, Gregory Chaitin has 
shown an equivalent statement in information 
theory. But perhaps the most well-known use of 
Gödel’s theorems (by Roger Penrose and John 
Lucas) comes in the philosophy of mind to argue 

that the mind can not be a machine. Towards the 
end, authors discuss this argument alongside its 
precursor in Gödel himself and a more elusive 
account of self-referentiality through Douglas 
Hofstadter.

The incompleteness theorems are broad and 
require a careful and nuanced understanding of 
their statements to proceed further. This is the 
aim of the next section.

Proof
It is crucial to comprehend two important basic 
notions in full formality before one begins 
trying to understand Gödel’s theorems. These 
are consistency and completeness. In order to 
explain these properties, it will be necessary to 
first discuss what it is that they are properties of.

In first-order logic, a theory is a set of 
sentences which, in a certain sense, “leaves no 
stone unturned”: If a collection of sentences 
within the set S imply the truth of another 
sentence s, then, in order for the set S to qualify 
as a theory, s must also be a part of it.

A sentence is any formula which is capable 
of having a truth-value. Therefore, “x<y”, where 
x, y are variables, is not a sentence, because  
one cannot say of it cannot say of it whether 
it is true or false (both x and y are said to be 
‘free variables’); on the other hand, replacing 
the variable with constants to read “2<3” turns 
it into a sentence with a truth-value (which is 
usually true).

Consistency and completeness are properties 
of first-order theories.

The first of these feels rather simple. A theory 
is consistent if it doesn’t affirm both a sentence 
as well as its negation. Completeness, however, 
appears to be something more ambitious: A theory 
is complete only if, for every possible sentence s, 
it affirms either s or its negation.

It will be worthwhile to further parse out 
precisely when a theory ends up affirming a 
given sentence. This is determined by the fact 
that the theory is “in” first-order logic.

First-order logic is associated with a collection 
of certain formal systems, which, in turn, are 
defined by a set of axioms coupled with certain 
rules of inference, which enable one to “derive” 
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one formula from a set of others. A formal 
system it typically treated as a totally abstract, 
syntactic object which merely instructs one on 
how to perform the “symbol-shunting”. As such, 
a formal system is constructed in such a way as 
to make the formal deductions in it “emulate” 
natural-language proofs.

A theory is defined by its own set of axioms. 
For example, Peano arithmetic is the name given 
to the first-order theory which models natural 
numbers. The axioms of this theory can be 
thought of as sentences picked up on the basis 
of some intuitive motivation (for example, the 
sentence “For all x, x + 0 = x”). From them, one 
may deduct theorems in the theory using the 
rules of inference associated with the formal 
system one is working within.

While Gödel’s theorem holds for the theory 
of Peano arithmetic, it is worthwhile to note 
that even theories ‘weaker’ than that (in the 
appropriate sense, which shall be explained) may 
succumb to the same.

The basic idea of Gödel’s proof (let’s say, for 
Peano arithmetic, abbreviated to P) takes the 
following steps:

1.	 Every recursive relation is representable 
in P.

2.	 Every formula in P can be arithmetized, 
such that for each formula corresponds a 
unique integer.

3.	 PT defined in the following manner is 
recursive (and thus representable in P): (x, 
y) ∈ PT if and only if the formula associated 
with the integer y constitutes a proof for 
the formula associated with the integer x. 
The representation of this relation in P is 
called the “provability predicate”, and shall 
be denoted by PT.

4.	 For every formula F(x) with exactly one 
free variable, there exists a sentence A 
such that F(a) is true in P if and only if A 
is (where a is the integer associated with 
the sentence A).

5.	 Let B(x) be a formula which reads “There 
exists a proof for the formula x.” By 4, 
there exists a sentence G such that ~B(g) 
is true if and only if G is; that is, B(g) is 
false if and only if G is true.

6.	 If G or its negation are provable in P, P is 
not consistent; if neither are provable, P is 
not complete.

This representation of the argument in natural 
language should by no means hoodwink the reader 
into believing that any of the steps in the proof 
are “obvious”; they each require thorough and 
rigorous argumentation, and direct attempts to 
sum it up with one-liners such as “This sentence 
is true but unprovable” fall short of doing so by 
something more than a respectful distance.

As such, these steps call for some more 
elaboration.

1.	 The notion of a recursive relation was still 
very much in its formative stages when 
Gödel first concocted his proof. Ironically, 
the definition of a recursive function is 
given recursively. One calls the simple 
functions which map an input to the 
next number the successor function. The 
constant function maps an input to a fixed 
natural number. The projection map takes 
an array of natural numbers as input and 
maps it to a particular entry of the array 
(say the ith entry). These are the three 
basic recursive functions. The composition, 
i.e., putting together of any two recursive 
functions is recursive.  Apart from this, a 
minimization of a recursive function is a 
function which returns the smallest value 
for which the recursive function outputs 
zero. A primitive recursion operator defines 
a new function from two known functions, 
which is defined as one function when 
zero is an input and defined as the second 
function’s output for every successor of 
zero. Now a relation is recursive if there 
is a function whose inputs which give zero 
are exactly those in the relation. A relation 
is said to be representable over a theory 
when there exists a formula which can be 
proven in the theory when the inputs are 
exactly those of the relation and disproven 
otherwise. Through an explicit construction 
one can show that every recursive relation 
is representable in P. The Church-Turing 
thesis states that every predicate that can 
be computed using finite steps using only 
a set of instructions is recursive.  



37

2.	 It is fairly easy to see explicitly how such 
an arithmetization is possible. One first 
encodes each symbol in the first-order 
language as a unique integer, and then a 
sequence of symbols via p1

a1*…pn
an, where 

pn is the nth prime and an is the code for 
the nth symbol. By the uniqueness of prime 
factorization, this function is injective, and 
so each formula will correspond to a unique 
integer.

3.	 Given that the formal system has finitely 
many axioms, it is intuitively clear that 
checking if a proof-procedure is valid or 
not will be a computable procedure. By the 
Church-Turing thesis mentioned in #1, this 
makes the formula PT recursive and thus 
representable in the system.

4.	 By the Church-Turing thesis, one can show 
that there is a recursive function d such 
that it maps a number a to the Gödel 
number of the formula A(a), where a is the 
Gödel number of A(x), where x is a variable. 
Now since d is recursive, a formula D(x,y) 
represents the function.

Now one defines a formula ψ which says that 
for all y D(x,y)=>F(y), where F is some formula 
with one free variable. One calls c the Gödel 
number of ψ. Substituting c in ψ one defines φ. 
The Gödel number of φ is, say, q. It is clear that 
d(c)=q. One subtitutes this into ψ and notice that 
it can be derived from a particular tautology in 
logic. One finally arrives at the statement that 
there is a formula φ such that φ and F(G(φ)) are 
equivalent. 

The final steps constitute the construction 
of B(x) and G, and the hangman’s move is now 
revealed:

i)	 If G is true, then B(g) is false; in other 
words, G (whose Gödel number g was) will 
be true but unprovable, making the system 
incomplete.

ii)	 If G is false, then B(g) is true; in other 
words, G will be false but provable, making 
the system inconsistent.

This completes Gödel’s first incompleteness 
theorem: Any consistent recursively axiomatized 
extension of Peano arithmetic is incomplete.

Gödel’s second incompleteness theorem is as 
follows: No consistent recursively axiomatizable 
extension of Peano arithmetic can prove its own 
consistency.

Let C denote the statement, “No proof of a 
contradiction exists in the theory”. This can be 
achieved by defining C as ~B(z), where z may 
the Gödel number of any contradictory formula 
Z, say, 0=1.

The crucial element in the proof of the second 
theorem is the fact that, if “B(a) implies A” is 
provable in the system—where a is the Gödel 
number of the sentence A—then, so is A.

Since one assumes the consistency of the 
system (and so the unprovability of Z in it), the 
provability of “B(z) implies Z” will have to imply 
the provability of ~B(z), which authors defined C 
to be. But the provability of “B(z) implies Z” also 
entails the provability of Z.

So, one has “1 is provable <=> 2 is provable”, 
and “1 is provable => 3 is provable”. From this, 
it is easy to see that authors have “2 is provable 
=> 3 is provable”. Replacing 1 with “B(z) implies 
Z”, 2 with C and 3 with Z yields “C is provable 
=> Z is provable”. Since Z is a contradiction and 
the system is consistent, this means that C must 
be unprovable, thereby concluding the theorem’s 
proof.

Criticism and Reception
Largely, the reception of the incompleteness 
theorems was not controversial[1]. It came to 
be soon accepted widely and by 1952, it was 
even a part of Kleene’s classic text, Introduction 
to Metamathematics [2]. Later, Kleene even 
claimed that no one had doubted the second 
incompleteness theorem [3]. Although this may 
not completely reflect the reactions of the time, for 
mathematicians were starting to grow suspicious 
of the existence of unprovable statements before 
the incompleteness results; Brouwer for one had 
suggested that mathematics was inexhaustible 
and not completely formalizable. Gödel had 
wanted to provide another detailed proof for the 
second theorem in anticipation of any friction from 
the mathematical community at the time [4]. This 
was not necessary. As Gödel himself remarked, 
the prompt acceptance of his results was one of 
the reasons of abandoning the second proof.
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The paper that formally presented the proofs 
was published in January 1931–the now famous, 
Über formal unentscheidbare Sätze der Principia 
Mathematica und verwandter Systeme, I[4]. At 
this time Bernays and Gödel corresponded on 
these results; discussing whether introducing an 
ω-rule (when F(x) is a quantifier free formula, 
and if it is true for every particular x, then it is 
true for all x; this is more of an informal rule of 
inference) would save from incompleteness and 
whether it would be in the spirit of Hilbert’s 
program (which shall be discussed in later 
sections).Von Neumann was impressed by these 
results and accepted them in stride even coming 
to the second theorem on his own. But of course, 
all was not sunshine and roses. In 1931, he also 
travelled to Bad Elster, Germany where he 
presented his paper. Ernst Zermelo was present 
at this conference.

Zermelo was perhaps the harshest critic 
of Gödel [1]. He criticized the incompleteness 
results by alleging that it put arbitrary finitistic 
restrictions on statements. He thought of 
quantifiers in terms of conjunction or disjunctions 
of statements. Proving all of such statements 
would itself involve induction which is not 
strictly finite in nature, which Zermelo thinks 
amounts to a proof of the general statement. 
This would remove the syntactical nature of the 
statements. This amounts to a misunderstanding 
of the syntactic results of Gödel. On this criticism, 
Zermelo dismissed the results. Gödel and Zermelo 
corresponded personally later, where Zermelo 
had claimed to find a loophole in Gödel’s proofs. 
He had mistakenly assumed that truth would be 
definable within the system allowing to present 
a liar-paradox-type situation. However, this is 
not true as one will see that arithmetical truth 
isn’t definable in arithmetic. Gödel wrote a ten-
page response to Zermelo, explaining his proof. 
Zermelo thanked Gödel for the clarifications on 
the proof but it seems that he never fully grasped 
the gravity of the incompleteness results [6].

Emil Post might have anticipated Gödel’s 
results in a real way, where he had independently 
come to the realization that there would be 
independent propositions in the system of the 
Principia. However, he did not present a complete 
proof and indeed said that he could not have 

replaced the “splendid actuality of your [Gödel’s] 
proof” [7].

Paul Finsler, a German mathematician, wrote 
to Gödel in 1933 [1] implying that his work in 
1926 [8] had prefigured that of Gödel himself. 
Gödel replied to Finsler and explained that 
Finsler had not been using a defined system 
at all and that his arguments would not be 
formalizable in a formal system. Finsler did not 
take Gödel’s response well. In a flurry of anger, 
Finsler lashed out against Gödel, claiming that 
one need not define the system completely and 
sharply to make sense of the statements and that 
he could on similar grounds attack Gödel’s proof 
because the he hadn’t proved the consistency 
of Peano’s axioms; even though the latter was 
shown to be impossible in the same paper! In 
an unsent paper that Gödel wrote to a student, 
he says that Finsler’s paper “contains obvious 
nonsense” [1]. By 1939, Hilbert and Bernays’ 
had presented the complete proof of the second 
incompleteness theorem in their Die Grundlagen 
der Mathematik II [9] which quashed the friction 
from within the logical community. The technical 
qualms about the theorems had no more life in 
them. The philosophical dimension, however, 
remained open.

The Vienna Circle was a group of philosophers 
who used to meet regularly in the 1920s-1930s. Kurt 
Gödel was a regular attendee along with Carnap, 
Reichenbach, Schlick and others. In January 
1931, Gödel presented the incompleteness results 
in front of the Vienna Circle [10]. The members 
of the circle reacted differently to the theorems. 
Felix Kaufmann thought that consistency could 
only be seen through an ‘intellectual insight’. 
Von Neumann believed that it had destroyed 
Hilbert’s program and that intuitionism was 
vindicated. Carnap knew the results beforehand 
and still went through and presented logicism in 
the Königsberg lecture to inform of the origins of 
logicism and also as the impact of Gödel’s results 
was not immediately obvious. Confusions about 
object and metalanguage seem to be abundant. 
Chwistek made this mistake and then quickly 
corrected himself.

Although he was not present at this meeting, 
having learnt of Gödel’s results later, the obscure 
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genius Ludwig Wittgenstein made some of the 
most perplexing remarks ever to be made on the 
theorems.

In his notes on the philosophy of mathematics, 
later translated and published as Remarks on the 
Foundations of Mathematics[11], Wittgenstein 
commented about provability and truth in a section 
that is now colloquially known as the “notorious 
paragraph”. Long before this, Wittgenstein in the 
Tractatus Logico-Philosophicus expresses that 
mathematical propositions lack sinn (sense); they 
are “pseudo-propositions” (cf. §6.2 [12]). They 
plainly state the equivalence of the expressions 
on either side of the equality; they do not refer to 
anything. And in Tractarian-Wittgenstein, this 
disqualifies them from being capable of truth or 
falsity. Although whether or not Wittgenstein 
was a logicist is up to debate, it seems fairly 
clear that he thought of mathematics as mainly 
formal and syntactic (cf. §6.22, 6.2321 [12] and II, 
§12 [13]). After his return to philosophy in 1929, 
Wittgenstein propounded a return to philosophy, 
moving into a finitism regarding mathematics. 
For the middle Wittgenstein, mathematical 
propositions are either proven to be true, proven 
to be false, have a decision procedure to be proven 
or disproven or not mathematical propositions at 
all (cf. II, §23 [13]). For Wittgenstein, there is 
no syntax-semantics distinction in mathematics, 
everything is syntax. He rejects any undecidability 
in mathematics (what is undecidable is not 
mathematical at all). Jumping ahead to his 
later work in the Remarks, for Wittgenstein’s 
idiosyncratic constructivist attitude, ‘true in a 
system’ and ‘provable in a system’ are equivalent 
(cf. App. I §5-7 [11]). Here, Wittgenstein builds on 
this basis to make some comments which leave 
one either bewildered or angered. Gödel himself 
was the latter. He thought that Wittgenstein 
‘advanced a completely trivial and uninteresting 
interpretation’ (as quoted in [1]).

From the Remarks, it seems that Wittgenstein 
believes that Gödel showed that there is a ‘true 
but unprovable statement in the system of 
Principia Mathematica’ (cf. App. I §8-19 [11]). 
Further, he tries to show that if the interpretation 
of the Gödelian sentence is that it is a true but 
unprovable statement, then if one finds a proof of 
it, the interpretation must be relinquished. In his 

notion of true, true in a system is the same as 
provable in that system. So, the only way he says 
that one can talk of true but unprovable might 
be that it is true in another system. He says 
“why should not proposition of physics–for e.g., 
be written in Russell’s symbolism?” If someone 
proved a statement ‘P’ (in his notation) that is 
to be interpreted as ‘P is true but unprovable 
in PM’. This naturally is the only way such a 
statement can be interpreted as. For if it were 
false, then it would be provable and then, 
(because it is proved) true. If it was proved, 
then it would not be unprovable. Hence, it can 
only be true and unprovable. But then again, he 
asks ‘true in what sense?’. This is the plan to go 
beyond or rather, to ‘bypass’ Gödel. If it is true 
in Russell’s sense then it must be provable and 
hence the interpretation of ‘P is not provable’ has 
to be given up. If one proves the unprovability 
of P, then by this proof one must have proved 
P, he says. The only thing that this tells one is 
that P is not a part of PM at all. The existence 
of ‘profitless performances’ like the liar’s paradox 
does not make language less usable.

At least on reading the comments that 
Wittgenstein makes alone, it seems easy to 
see why the Remarks came to be so heavily 
criticized. Wittgenstein seems to misunderstand 
the method and the statements of Gödel. The 
theorems are syntactical and really tell one the 
undecidability of arithmetic given its consistency. 
It seems plausible that Wittgenstein would 
reject the Gödelian statement from being a 
mathematical proposition in the first place; that 
this is just a statement whose proof, if and when 
discovered, would have to be part of some other 
mathematical system, a new calculus altogether. 
This is a very unpropitious position to take since 
it can be shown that all Gödelian sentences are 
provably equivalent, and mathematicians have 
found lots of these statements that are not just 
pathological but a part of mathematical problems 
of copious amounts of interest. This is still not 
uncharacteristic of Wittgenstein considering that 
he took similar positions in relation to “undecided” 
propositions like the Goldbach Conjecture and 
the then-unproven Fermat’s Last Theorem (cf. 
§189 [14]).

Floyd and Putnam [15] have argued in favor of 
Wittgenstein’s paragraph. Firstly, they claim that 
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Wittgenstein’s claim about the untranslatability 
of P as ‘P is true but unprovable in PM’ is correct.

A system ω-inconsistent if, for some property 
F,it is provable that F(n) holds for every standard 
natural number n, but itis also provable that 
there is some natural number n such that P(n) 
fails. Since the provability predicate has the 
form,“There exists a p such that PT(x,p)”, if P is 
proven, then PM has to be ω-inconsistent (setting 
aside inconsistency in general for now). Hence, 
the variable pmust be a nonstandard natural 
number; therefore, the translation of P as ‘P is 
true but unprovable in PM’ is misguided.

They interpret Wittgenstein as saying that 
just because a proposition is unprovable doesn’t 
mean it is not true in some other sense. They 
say that Wittgenstein is actually battling against 
the logicism of Frege and Russell, and that 
he actually is rejecting the idea that an ideal 
language can provide one a standard of truth. 
PM or the Begriffschrift don’t provide an ideal 
language and foundation for mathematics, but 
are formal systems themselves. They claim that 
Wittgenstein was instead attacking the idea that 
Gödel’s results show that there is a standard 
metaphysical truth about arithmetic.

Others have also commented on these 
paragraphs. Priest [16] argues that these remarks 
of Wittgenstein should not be understood in terms 
of the modern model-theoretic account of truth 
(indeed Wittgenstein himself gives a redundancy 
theory of truth in the same section) and that it 
is improper to say that he misunderstood Gödel. 
Priest remains agnostic on whether Wittgenstein 
understood Gödel but says that one must read 
the text in light of his idiosyncratic identification 
of truth and provability, and senselessness 
of mathematics, even claiming that a hint of 
acceptance of contradictions lies dormant in 
these remarks. Steiner [17] and Rodych [18] have 
argued that these accounts of the paragraph 
are too sympathetic and that textual evidence, 
especially within the other areas of his oeuvre 
makes it likely that Wittgenstein’s remarks are 
mainly mistaken.

Whatever the immediate reactions in the 
communities of logic, philosophy and mathematics 
may be, the Incompleteness Theorems have 

strongly held their grip on the imagination of 
these communities for years to come and have 
had far-reaching results across the widest 
domains of human knowledge.

Discussion
Logic and Mathematics
The historical context of Gödel’s Incompleteness 
Theorem is before model theory and almost only 
completely reliant on the techniques of proof 
theory. Tarski’s work in model theory and beyond 
shows some very interesting and closely related 
ideas concerning formal systems. Of these closely 
related ideas, the closest one—so close that Gödel 
himself arrived at it independently while proving 
the Incompleteness theorems—is now known as 
“Tarski’s Undefinability Theorem”.
Theorem (Tarksi’s Undefinability).  The set of 
Gödel numbers of the sentences of a consistent 
extension of Q, namely arithmetic, that are true 
under it is not arithmetically definable.

This means that “truth” cannot be defined 
inside the system. Truth is to be understood as 
satisfaction of the formula under the standard 
model. Further, since all recursive sets are 
definable in arithmetic, the set of the Gödel 
numbers of true sentences of arithmetic is not 
recursive. If one assumes Church’s thesis, then 
there also doesn’t exist any algorithm such 
that one can decide whether any sentence of 
arithmetic is true or not.

Due to unfortunate notation, two notions of 
“undecidability” exist. A sentence σ is said to 
be undecidable in theory T, if neither it nor its 
negation are derivable in T. To avoid confusion 
with the other notion, authors shall use–as has 
become custom– “independent” instead. A set 
is called decidable if there exists an algorithm 
(which stops in finite time) which can decide 
whether an input is part of the set or not. They 
are also called recursive sets. A theory is said to 
be decidable if the set of theorems of that theory 
is decidable. Authors shall explore these notions 
more in the third section.

Another closely related theorem is Church’s 
Undecidability Theorem, which states that the set 
of valid sentences of arithmetic is not decidable.
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Gödel’s First Incompleteness Theorem, 
Tarski’s Undefinability Theorem and the 
Church’s Undecidability Theorem are all heavily 
reliant on the techniques of the arithmetization 
of syntax and the diagonal lemma. This is a novel 
technique whose use by Gödel showed one the 
limitations of formal systems which can represent 
basic arithmetic. This is often considered to be 
real legacy of the Incompleteness Theorems. 
However, there is even more that is true. Gödel’s 
Incompleteness Theorem’s were the first theorems 
which established the existence of statements 
that cannot be proven and at the same time 
whose negations can also not be proven.

In the year 1900, David Hilbert gave one of 
the most influential lectures at the International 
Congress of Mathematics. Hilbert proposed 
twenty-three problems that would become a 
guide map for mathematicians well into the rest 
of the century [19]. Some of these problems are 
still unsolved. Running with the establishment of 
rigorous argumentation in the work of Weierstrass, 
Cauchy and Minkowski, Hilbert explains how a 
satisfactory solution to these problems would 
need one “to investigate the principles underlying 
these ideas and so to establish them upon a 
simple and complete system of axioms”. Further, 
as one will see in later sections, Hilbert also 
emphasized on solutions being based on a finite 
number of steps on finite hypotheses–a deduction 
to the exact formulation of the problem. Gödel’s 
theorems have a direct bearing on the second of 
these problems.

The second problem proposed by Hilbert was 
that of the proof of the compatibility of the axioms 
of arithmetic. To establish an exact and complete 
description of arithmetic, one must show that no 
finite deductions from the axioms of arithmetic 
lead to a contradiction, in other words, that it 
is consistent.

Hilbert explains how one may construct a 
suitable field of numbers for any geometrical 
system and then embed the geometry into the 
field and reduce the consistency of geometrical 
theory into that of the arithmetic. This meant 
that proving the consistency of arithmetic is a 
priority; most other things depend on arithmetic. 
If a proof of the consistency of arithmetic is 
given on Hilbert’s conditions, then a lot of higher 

mathematics which is based on arithmetic, can 
also be shown to be consistent (analogous to 
the example of geometry). The problem also is 
contextually significant for Hilbert’s philosophy 
of mathematics.

One must note a few things before one 
proceeds. Firstly, this notion of “finite methods” 
is quite elusive. Secondly, developments of model 
theory had not yet taken place. If one understands 
the problem to be a proof of the consistency of 
arithmetic using methods which are formalizable 
inside arithmetic, say in Peano Arithmetic, then 
this is proven to be impossible by the Second 
Incompleteness Theorem. However, this does not 
mean that some acceptable proof of consistency 
cannot exist. Gentzen surprisingly provided one 
with a consistency proof of Peano arithmetic in 
1936 [20].

The proof was not formalizable within Peano 
arithmetic, meaning that this is in no way a 
violation of Gödel’s theorems. Primitive Recursive 
Arithmetic is simpler than PA and it is likely 
that Hilbert would have been satisfied with a 
proof of PA’s consistency through PRA. However, 
it is unclear whether the method satisfies 
Hilbert’s criteria. Further, one can even show the 
consistency of PA within something stronger like 
ZFC set theory. Still, the Second Incompleteness 
Theorem applies to ZFC, making it impossible to 
prove the consistency of ZFC itself inside ZFC. 
Hence, it remains open whether Hilbert’s second 
problem was solved positively by Gentzen or 
negatively by Gödel’s Incompleteness.

However, if one accepts it as a proper proof 
method, then one need not worry about the 
consistency of the arithmetic. One needs not 
be thrown out of seats into a confused delirium 
about the consistency of arithmetic; it is safe and 
secure. Where does this leave one? First, one is 
left to reconsider the Second Incompleteness 
Theorem more precisely. The only thing that 
the Second Incompleteness states concerning the 
consistency of arithmetic is that one cannot find 
a proof of a statement expressing the consistency 
of the first-order theory inside the language and 
methods of the first-order theory–by the theory 
itself; this is a crucial nuance and can easily be 
misrepresented as saying that no proof can exist 
in a theory “weaker” than PA. Strictly, Gentzen’s 
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system does not contain PA and isn’t “stronger” 
than PA.

Another one of Hilbert’s problems has been 
impacted by the Incompleteness Theorems, 
although more indirectly. This is the tenth 
problem—To find a finite algorithm by which one 
can determine whether a Diophantine equation is 
solvable in the integers. A Diophantine equation 
is a polynomial equation of finite unknowns 
and integer coefficients. The tenth problem was 
proven to be impossible through the work of Yuri 
Matiyasevich, Hilary Putnam, Julia Robinson 
and Martin Davis [21]; the last of whom used 
Gödel’s method of encoding statements about 
a system into the system. Later, Maityasevich 
found a way to show that recursively enumerable 
sets can be represented by Diophantine 
equations. From incompleteness one knows that 
the set of provably true statements is recursively 
enumerable by definition, but not recursive since 
it is incomplete. Hence, there are recursively 
enumerable sets that are not recursive. From 
this, it follows that there is no such algorithm 
in general.

Other examples of independent statements 
of formal systems have popped up across the 
years. The Paris-Harrington theorem, Goodstein 
theorem, Kruskal’s theorem and many more have 
been proven to be of this sort. Gödel’s legacy 
in showing the first statement independent of 
its formal theory and the limitations of formal 
systems in general remains unshakeable.

Philosophy of mathematics & science
After logic and mathematics themselves, it is the 
philosophy of mathematics which was of most 
immediate relevance to Gödel’s work.

At the time, the debate over the foundations 
of mathematics and its nature had given rise 
to three distinct schools of thought: Formalism, 
logicism and intuitionism. The impact of Gödel’s 
theorem on each of them will be discussed here.

It is already seen in the previous section the 
consequences Gödel’s theorem had on Hilbert’s 
second problem. But in fact, the reach of the 
former went beyond just this: It struck a fatal 
blow to what is now known as Hilbert’s program, 
and thus had major implications upon formalism 
itself.

To understand formalism, one must first 
understand what made formalism necessary. In 
standard mathematics, one seems to be forced 
to presuppose the metaphysical existence of an 
infinite jungle of objects: Numbers, relations, 
sets, and so on. The desire to make precise  what 
ontological commitments mathematics required 
gave birth to formalism.

And so, the formalist goes to the other extreme, 
and claims that mathematical utterances are 
metaphysically meaningless. To put it succinctly, 
“mathematics is not a body of propositions 
representing an abstract sector of reality, but is 
much more akin to a game, bringing with it no 
more commitment to an ontology of objects or 
properties than ludo or chess.” [22]

This kind of ‘game formalism’, however, was 
subjected to a series of devastating attacks (the 
details of which need not concern one now) by 
Frege. It is interesting to note that Gödel himself 
had objections to interpreting mathematics 
as pure syntax on other grounds as well: He 
believed that any purported reduction to pure 
syntax will end up with the concepts involved 
themselves being presupposed implicitly in the 
syntax, unless one restricted oneself to absurdly 
elementary systems. [23]

And so now is when David Hilbert, with 
his aforementioned program, joins the fore. He 
soon became the leading figure of formalism. To 
begin with, Hilbert divided mathematics into two 
domains: the finitary and the infinitary. Drawing 
the boundary between the two in a rough manner, 
Hilbert described the former as those objects 
which are “intuitively present as (irreducible) 
immediate experience prior to all thought.” This 
would include the finite integers (and perhaps 
the rationals) but exclude the irrationals. Hilbert 
is considered to be a realist with respect to this 
sector. As for the rest, they were but meaningless 
symbols in the formalist sense. [24]

Quite apart from the problem of making 
rigorous the line between the two domains, 
the rise and downfall of Hilbert’s program can 
both be traced down to this one thing: Hilbert’s 
certainty that finitary means are consistent, and 
that the whole of the infinitary domain can be 
reduced down to them.
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For the sake of clarity, authors enumerate 
some of the chief goals of Hilbert’s program:

1.	 Finiteness: Any result concerning infinitary 
objects should be provable using a formalism 
of finitary objects exclusively.

2.	 Consistency: No contradiction should be 
obtainable in the formalism.

3.	 Completeness: All true mathematical 
statements should be provable in this 
formalism.

Of these, the second was the most important 
to validate Hilbert’s philosophy: Contradictions 
must be unobtainable from finitary objects. And 
it is at this stage that Gödel enters the picture: 
His incompleteness theorems showed that, for 
these finitary objects, achieving completeness 
was impossible, and proving consistency (while 
staying within the formalism) was impossible—
effectively shattering Hilbert’s goal.

So where does the school of formalism itself 
stand now?

Most attempts to keep formalism alive take on 
after Hilbert’s vision of it, typically by tweaking 
the allowance associated with the notion 
‘finitary’, and then observing the strength and 
the properties of the resultant formalism. (Recall 
that Hilbert’s hope had been that his notion of 
finitary would result in a formalism which would 
have been as strong as it gets.) These so-called 
relativized Hilbert programs have found great 
utility in proof theory and reverse mathematics. 
[25]

Similarly, formalism itself is also far from 
dead. One resurrection of it, distinct from both 
game formalism and Hilbert’s formalism, does 
away with Hilbert’s dichotomy and, committing 
ontologically only to metamathematics, holds 
mathematics to be a collection of formal systems. 
This “relativized” formalism, echoing the process 
above, reduces Gödel’s second theorem to just 
another formal result.

In truth, however, accounts of direct attempts 
to retain formalism does not do its legacy justice. 
Hilbert remains relevant and revolutionary by 
the way in which he changed the manner in 
which axioms were treated in mathematics. They 
were no longer a set of self-evident statements; 

rather, they were any arbitrary set of statements 
which one may clump together according to their 
wishes in order to examine what they may give 
rise to. Since this experimental treatment of 
axioms also threw the consistency of the system 
into doubt, this shed the spotlight on yet another 
revolution in the philosophy of mathematics: 
That consistency is existence.

To conclude the section on formalism, “...
of the ‘big three’ foundational programs of the 
early 20th century, logicism and intuitionism 
retain supporters but are definitely special and 
minority positions, whereas formalism, its aims 
adjusted after the Gödelian catastrophe, has so 
infused subsequent mathematical practice that 
these aims and attitudes barely rate a mention. 
That must count as a form of success.”[26]

With this, authors now move on to logicism—
which was, if anything, even more directly 
impacted by Gödel’s theorems than formalism 
was.

After identifying a now-famous paradox in 
Frege’s original conception of logicism, Russell’s 
vision of refinement for the same is described in 
the preface to his 1903 ‘Principles of Mathematics’: 
“...all pure mathematics deals exclusively with 
concepts definable in terms of a very small number 
of fundamental logical concepts, and that all its 
propositions are deducible from a very small 
number of fundamental logical principles.” In this 
case, it becomes the logician’s job to define logic 
in the necessary manner and prove the veracity 
of this claim. This was the goal striven to achieve 
with the project Principia Mathematica.

The punchline to this story is already well-
known: Gödel proved the existence of formally 
undecidable statements in Principia Mathematica 
(as one knows it was this particular formal 
system which bore the original application of his 
theorems), and effectively ended the dream of a 
complete and consistent logical axiomatization 
for all mathematics.

But like Hilbert’s program was for formalism, 
Principia Mathematica was but a figurehead 
representing the ideal of the logicist then; 
logicism itself has absorbed Gödel’s attack and 
metamorphized, and Principia Mathematica itself 
remains important and relevant—although not 
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just exactly for the reasons its authors thought 
it would.

One may say that difference of opinion 
between formalism and Russell’s logicism lies in 
the fact that the division between finitary and 
infinitary sectors was replaced with that of logic 
and non-logic (and the new metaphysics this 
replacement entailed)—the rest of the project 
remained the same (and thus failed in the same 
way). However, a crucial difference arises in the 
fact that, in spite of the aims of PM in particular, 
logicism itself is not inherently inconsistent with 
the fact that there exist undecidable statements 
in mathematics.

To begin with, instead of identifying formal 
derivability (in logic) with mathematical truth, 
the logicist may merely identify it with knowable 
mathematical truth (with a suitable notion of 
knowability). This is often referred to as the weak 
version of logicism, and essentially attempts to 
relegate independent statements to the realm of 
unknowable mathematical truth by making the 
required logical formal system an infinitary one 
[27]. One will soon see a similar theme in the 
different context of Paul Benacerraf’s discussion 
of Gödel’s theorem in the philosophy of mind.

Apart from this, one may even maintain 
Russell’s logicism (which identifies formal 
derivability with just mathematical truth) by 
weakening the claim to just saying that all 
mathematical truths are derivable not in any 
one formal system, but in a set of them. This 
parallels the “relativized” formalism mentioned 
above.

However, there remain various other reasons 
to criticize logicism. One need not concern oneself 
with those here.

Intuitionism is, perhaps, the most enigmatic 
of the three doctrines being discussed. If 
Hilbert’s essence is encapsulated by the maxim 
“Consistency is existence”, then Brouwer’s maxim 
is the following: To exist is to be constructed.

An ordinary garden-variety proof in classical 
mathematics consists of assuming the negation 
of A, obtaining a contradiction, and concluding 
A. It was seen, however, that assuming the law 
of the excluded middle and other such tools led 
to various metaphysical difficulties—which were 

what led to formalism and the like in the first 
place. Therefore, Brouwer rejected the validity 
of all such classical derivations and baptized 
the ‘constructive proof’ to be the central notion 
in logic and mathematics, in place of ‘truth’.

And so, intuitionistic logic rejects the law of 
the excluded middle; intuitionistic mathematics 
rejects the notion of ‘actual’ infinity and replace 
it with a constructible version: ‘potential’ infinity.

From these considerations stems the idea that 
mathematical objects are merely constructions of 
the human mind. Brouwer’s intuitionism was an 
idea far more radical than formalism or logicism; 
indeed, many objected against it on the grounds 
that a philosophical idea should not purport to 
dictate so strongly what a mathematician should 
and shouldn’t do.

Coming to the matter of its relationship 
with the incompleteness theorems: Brouwer was 
always of the opinion that mathematics was 
inexhaustible. The continuum is infinite and 
man’s capacity to construct is finite; “one must 
always again draw afresh from the ‘fountain 
of intuition’” [28]. And as a matter of fact, it 
seems to be that it was Gödel who was at least 
partly influenced by Brouwer’s notions and his 
constructivism.

One has, from Carnap’s diaries, in the 
years just preceding the publication of the 
incompleteness theorems [29]:

[Gödel talked to me that day] about the 
inexhaustibility of mathematics. He was 
stimulated to this idea by Brouwer’s Vienna 
lecture. Mathematics is not completely 
formalizable. He appears to be right.

Carnap writes down what Gödel told him:
We admit as legitimate mathematics certain 
reflections on the grammar of a language 
that concerns the empirical. If one seeks to 
formalize such a mathematics, then with 
each formalization there are problems, which 
one can understand and express in ordinary 
language, but cannot express in the given 
formalized language. It follows (Brouwer) 
that mathematics is inexhaustible: one 
must always again draw afresh from the 
‘fountain of intuition’. There is, therefore, 
no characteristica universalis for the whole 
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mathematics, and no decision procedure for 
the whole mathematics. In each and every 
closed language there are only countably 
many expressions. The continuum appears 
only in ‘the whole of mathematics’ . . . If we 
have only one language, and can only make 
‘elucidations’ about it, then these elucidations 
are inexhaustible, they always require some 
new intuition again.
Therefore, it should come as no surprise 

that intuitionism is the only one of the three 
projects which was almost emboldened by Gödel’s 
theorems; and while it has not dethroned classical 
mathematics, it remains the one generating the 
most active interest presently.

So far, authors have talked about the various 
philosophies of mathematics that have been 
impacted by the Incompleteness Theorems. 
However, an evergreen position regarding the 
ontology of mathematics is Platonism. The two 
theses that largely characterize mathematical 
Platonism are: (1) mathematical objects exist 
independently of one and the mathematical 
language and (2) mathematical objects are non-
spatiotemporal and causally inert. These two are 
basic commitments and a lot of variety arises 
from differences in how much the philosopher 
sticks to these claims. Gödel himself was some 
sort of a strong mathematical Platonist.

Analyticity can be understood in such a way 
where all the axioms and theorems boil down 
to the law of identity, A is A. But arithmetic 
is essentially undecidable (incompleteness), and 
the set of analytic statements/theorems would 
be recursively enumerable. Gödel here rules out 
this analyticity in mathematics. Gödel instead 
uses a different notion of analyticity, where 
propositions are true by the ‘nature of what the 
concepts that occur in it mean’. Gödel’s realism 
about mathematics allows him to maintain that 
the concepts that make these analytic statements 
or the axioms of Principia true are objective 
and independent of one. He even says that one 
may assume axioms based on their success in 
applications (but still analytic axioms). Gödel says

“... it is correct that a mathematical proposition 
says nothing about the physical or psychical 
reality existing in space and time, because 

it is true already owing to the meaning of 
the terms occurring in it, irrespectively of 
the world of real things. What is wrong, 
however, is that the meaning of the terms 
(that is, the concepts they denote) is asserted 
to be something man-made and consisting 
merely in semantical conventions. The 
truth, I believe, is that these concepts form 
an objective reality of their own, which we 
cannot create or change, but only perceive 
and describe.” (p. 320 [30])
Putnam [31] argues similarly to say that one 

can also establish “syntheticity” in mathematics. 
He took Gödel’s theorems in conjunction with 
the broadly naturalistic attitude brought about 
by (neo-)pragmatism to transform it into a 
Platonism and to build a realistic attitude to 
mathematics. This is strikingly anti-Gödelian in 
the sympathies for naturalism but is very close 
to the method of Gödelian Platonism. There 
is a notable tension between two things that 
Putnam builds his argument from. Firstly, that 
mathematics works. It is used all the time–the so-
called unreasonable effectiveness of mathematics 
in natural science. Secondly, these formal systems 
used in mathematics (ZFC, PA etc.) cannot prove 
their own consistency finitistically as the second 
incompleteness theorem tells one.

A strictly analytic conception of mathematics 
seems prima facie untenable in the light of the 
incompleteness theorems. Putnam argues here 
that some sort of “synthetic” truths must exist 
in mathematics and quasi-empirical methods are 
the best chance at getting them. Calculus, to 
take an example, was quasi-empirical before its 
formalisation by Weierstrass. The formalization 
doesn’t justify calculus, calculus was already 
justified by other means. Mathematics (and 
the need for it) is necessarily embedded in its 
applications. Putnam argues that a realistic 
interpretation, namely that mathematical 
statements are made true by something external 
to one, allows one to understand the consistency 
and the creative applications of mathematics in 
the best way. He even argues that one may learn 
things from ‘mathematical experiments’. A shift 
of attitude in broad scale mathematics, with the 
advent of ‘computer experiments/assisted-proofs’ 
and brute-force verification, might fortify the 
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attractiveness of this position. Mathematics is 
fundamental to the world and Putnam argues 
that one might as well take it as a part of the 
world.
Automata theory & Information theory
In the first section of the discussion, authors 
saw two sister-theorems (so to speak) to 
Gödel’s: Tarski’s undefinability theorem and 
Church’s undecidability theorem. In this 
section, authors shall first look at another 
fundamental result developed by Alan Turing: 
Namely, the unsolvability of the halting problem. 
Subsequently, authors shall briefly appraise an 
important development of this result, due to 
Gregory Chaitin.

The Turing machine is an entity scans a tape 
(upon each square of which is printed a letter 
from the alphabet) which extends infinitely to the 
left and right and, according to the ‘instruction’ 
delivered by a function, moves left or right (or 
stays) and changes its state. A Turing machine 
will keep computing until it reaches a state 
upon for which it has no instructions. At this 
point, one says that the machine has halted; and 
furthermore, that the machine accepts the string 
it was originally fed.

Now, Turing machines can also be viewed as 
devices used to compute functions. The initial 
input string is the argument for the function, and 
the expression on the tape when the machine halts 
(if it halts) is taken to be the value of the function 
at that argument. In fact, the kind of functions 
Turing machines compute were posited to capture 
a certain specific kind of function, which may be 
referred to as algorithmic or effectively computable 
or also partial recursive functions.

In fact, all these three classes of functions 
were posited independently in different ways 
by Church, Turing and Gödel respectively, in 
an attempt to capture the informal notion of 
an ‘effectively calculable function’; that they 
do indeed coincide was proven by Church and 
Turing, and the statement that they do capture 
the aforementioned notion is known as the 
Church-Turing thesis [32].

Before moving on, one must observe that the 
set of functions from the set of naturals to itself 
is non-enumerable, and that the set of Turing 

machines is enumerable (from which it follows 
that each Turing machine can be given a natural 
number encoding). From these considerations 
alone, one can see that there must exist 
natural number functions which are not Turing 
computable.

The halting problem is the question of whether 
the following function is Turing computable:  
h(m, n)→{1,2} such that h(m, n)  = 1 if the Turing 
machine with the natural number encoding n 
halts on the input tape with the natural number 
encoding n, and h(m, n)  = 2 if the Turing machine 
fails to halt on the input tape.
Theorem.  The halting function h is not Turing 
computable.
Proof. One first constructs the following Turing 
machines:

1.	 The copying machine, C: Given a tape 
containing a block of n strokes, and 
otherwise blank, if the machine is started 
scanning the leftmost stroke on the tape, 
it will eventually halt with the tape 
containing two blocks of the n strokes 
separated by a blank, and otherwise 
blank, with the machine scanning the 
leftmost stroke on the tape.

2.	 The dithering machine, D: Started on 
the leftmost of a block of n strokes on an 
otherwise blank tape, D eventually halts 
if n >1, but never halts if n = 1.

Now, suppose one had a Turing machine H 
which computed the function h. This means 
that one can easily create a combined machine 
C+H=G which first performs the processes of 
the machine C and then, upon halting, begins 
the processes of the machine H. This machine G 
computes the function g(n) = h(n, n). One now 
further combines G with D to get a machine 
G+D=M, which first goes through the operations 
of G and then the operations of D.

Now, if the Turing machine numbered  
halts when fed the tape corresponding to its 
own number, one would have h(n, n) = g(n) 
= 1, and consequently, the machine M would 
not halt when started on the number n, 
since one describes D as halting only if n > 
1. On the other hand, if the Turing machine 
numbered n does not halt when fed the tape 
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corresponding to its own number, one would have  
h(n, n) = g(n) = 2, and consequently, the machine 
M would halt when started on the number n.

But what would happen if one fed the 
machine M its own number? In this case, 
it would halt on m only if m does not halt 
on m, that is, if it does not halt on m. 
This is a contradiction. One must conclude that 
h is not computable.

One can see once again the diagonalization 
original to Cantor, a certain flavour of self-
referential argumentation inspired by Gödel, 
lying at the heart of the argument. As a historical 
aside: The proof of the negative answer to the 
halting problem was Turing’s first step in proving 
the unsolvability of the Entscheidungsproblem, 
also known as Church’s undecidability theorem, 
and which Turing proved independently of and 
parallel to Church [33]. 

The relationship between automata theory 
and Gödel’s theorem has also been exploited 
by Putnam in an article[34], wherein he shows 
that if scientific epistemology—what Chomsky 
referred to as the “scientific competence”—could 
ever be represented by a Turing machine, then 
humans could never, given that level of scientific 
competence, know this fact (in the sense of having 
evidence which provides justification for it).

An extended application of the halting 
problem in the field of algorithmic information 
theory was first given by Gregory Chaitin 
in terms of what is now known as Chaitin’s 
constant and Chaitin’s incompleteness theorem. 
Chaitin’s constant can be thought of as the 
probability that a random program of a fixed 
finite length will halt. Its value is highly machine-
dependent.

Chaitin’s constant is computably enumerable, 
but algorithmically random. This is to say that 
each halting probability is uncomputable by any 
algorithm, and in some cases, it has been proven 
that not even a single bit of Chaitin’s constant is 
computable. Without going into too many details, 
Chaitin’s incompleteness theorem states that 
there exists a position of the decimal expansion 
of Chaitin’s constant beyond which the value of 
the numeral is undecidable.

Authors conclude this section by emphasizing 

the point that the halting problem and Chaitin’s 
construction have been widely impactful. This is 
because many important problems in fields such 
as number theory amount to solving the halting 
problem for special programs, or alternatively, to 
knowing enough bits of Chaitin’s constant.
Philosophy of mind & cognitive science
In 1951, the eponymous logician formulated the 
following:
Gödel’s disjunction: Either mathematics is 
incompletable in this sense, that its evident axioms 
can never be comprised in a finite rule, that is 
to say, the human mind infinitely surpasses the 
powers of any finite machine, or else there exist 
absolutely undecidable problems.[23]

Of all the various extensions in application 
Gödel’s theorem has found across disciplines, the 
temptation to extract conclusions regarding the 
nature of consciousness from it is undoubtedly 
the most seductive one of them all. It is with 
good reason that J.R. Lucas, in one of the most 
well-known articles regarding this matter, says 
immediately after declaring in the opening 
lines his belief that Gödel’s theorem disproves 
mechanism: “Almost every mathematical logician 
I have put the matter to has confessed to similar 
thoughts, but has felt reluctant to commit 
himself definitely until he could see the whole 
argument set out, with all objections fully stated 
and properly met. This I attempt to do.” [35]

Gödel’s own thought process taking him to 
the aforementioned disjunction was clear enough. 
One starts off with the following tautology: Either 
the human mind is not a Turing machine, or it 
is a Turing machine. If the latter is true, then, 
since it is known that

1.	 Every Turing machine capable of performing 
arithmetic is incomplete

2.	 The human mind is capable of performing 
arithmetic,

it follows that the human mind is essentially 
incomplete with respect to mathematics, that 
is, there exist some questions in it which are 
absolutely undecidable, whose answers one cannot 
know even in principle. And so, mathematics is 
incompletable.

If the former is true, then there may not 
exist any ‘absolutely’ undecidable problems in 
mathematics. However, since this means that the 
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human mind cannot be captured by any finite 
Turing machine, it follows that neither can the 
axioms of mathematics—for Gödel held that 
mathematical axioms were just those sentences 
which were necessarily evident by virtue of basic 
mathematical intuition in humans. Since the 
axioms of mathematics are then uncapturable 
by a finite rule, one once again arrives at the 
conclusion that mathematics is incompletable—
albeit in a different sense than the first.

In the same piece, Gödel went on to remark 
that it seems to be the first alternative which 
is in good agreement with leading figures in 
physiology (and authors will soon look into 
explicit proponents of this alternative and 
its naysayers); and so perhaps Gödel was, in 
general, inclined to believe that the human 
mind surpassed the Turing machine. However, 
he adds that it is the philosophical conclusions 
of the second alternative (which was, for him, 
Platonism) which seem to gel better with modern 
developments in the foundations of mathematics.

Now, it is interesting to note here that 
while this discussion is on Gödel’s Gibbs lecture 
which was delivered in the year 1951, the notes 
pertaining to the same were published only 
posthumously, and by the time they came out, 
Nagel & Newman had already put forward an 
informal anti-mechanist suggestion based on 
Gödel’s theorem in their 1958 exposition titled 
‘Gödel’s proof’ [36], Lucas had already published 
‘Minds, Machines and Gödel’ in 1961, and people 
had already begun attacking Lucas’ argument.

Lucas’ article itself was a wholehearted 
espousal of the anti-mechanist conclusion, that 
is, of the first leg of Gödel’s disjunction. His idea 
was, at heart, quite a natural one: In spite of 
the fact that there exist formally undecidable 
propositions in mathematics, one is able to ‘see’ 
that these propositions are true—something which 
the formal system in question cannot do. It follows 
that the human mind transcends formal systems.

Perhaps the most interesting analysis/
criticism of it was given by Paul Benacerraf in 
his 1967 article ‘God, the Devil and Gödel’ [37]. 
Benacerraf fleshed out better and made more 
rigorous the assumptions and steps in Lucas’ 
argument, concluding that there is, inarguably, 
a contradiction in saying both that the human 

mind is a Turing machine and that humans can 
know the independent statements of a Turing 
machine to be true.

Benacerraf diverged from Lucas at this stage, 
and concluded instead that humans cannot know 
the truth of certain independent statements; 
that there was an in-principle limitation in the 
power of the human mind to perceive the truth or 
falsity of mathematical statements. In fact, what 
Benacerraf did was nothing other than reveal the 
other leg of Gödel’s disjunction—and emphasis is 
placed on the use of the word ‘reveal’ here, for 
as it most interestingly turns out, Benacerraf’s 
article also came out before the publication of 
Gödel’s Gibbs lecture and his other manuscripts.

The last major player in this milieu whom 
authors will discuss is Sir Roger Penrose, whose 
advocation of anti-mechanism (indeed, it is now 
referred to as the Penrose-Lucas argument) is, 
perhaps, closest in emotion to Gödel himself 
(Penrose himself is also a self-declared Platonist). 
For while Penrose recognizes the ‘choice’ offered 
to one by the disjunction, he insists that to say 
that there is an algorithm to decide mathematical 
truth which is too complicated to ever be known 
to one is a contradiction in itself. As he says in 
The Emperor’s New Mind: “But this flies in the 
face of what mathematics is all about! The whole 
point of our mathematical heritage and training 
is that we do not bow down to the authority of 
some obscure rules that we can never hope to 
understand.” [38]

Needless to say, however, such an argument 
is far from what may be required to settle the 
matter once and for all, and a standing consensus 
among various experts in the relevant fields is 
that it ultimately fails (for example, Putnam, 
among others, has contended that there is no 
reason to believe that the human mind can 
ultimately always prove the consistency of an 
arbitrarily complex Turing machine, which 
is the conditional which must be satisfied to 
apply Gödel’s theorem and find the independent 
statement). [39]

As it so happens, one of these critics was the 
American scholar Douglas Hofstadter—who had 
some other ideas of his own. A decidedly less 
bold attempt to use Gödel’s theorem in making 
advances in the understanding of consciousness 
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owes itself primarily to him, one of the biggest 
names in thefield of cognitive science.

In his book Gödel, Escher, Bach: An Eternal 
Golden Braid, Hofstadter comments [40]:

If one uses Gödel’s theorem as a metaphor, 
as a source of inspiration, rather than trying 
to translate it literally into the language 
of psychology or of any other discipline, 
then perhaps it can suggest new truths in 
psychology or other areas. But it is quite 
unjustifiable to translate it directly into a 
statement of another discipline and take that 
as equally valid. It would be a large mistake 
to think that what has been worked out 
with the utmost delicacy in mathematical 
logic should hold without modification in a 
completely different area.
Having given his readers a word of caution, 

Hofstadter now goes on to say:
I think it can have suggestive value 
to translate Gödel’s theorem into other 
domains, provided one specifies in advance 
that the translations are metaphorical and 
are not intended to be taken literally. That 
having been said, I see two major ways of 
using analogies to connect Gödel’s theorem 
and human thoughts…
While Penrose and Lucas were more focused 

on the result of the incompleteness theorems and 
the consequences that they entailed, Hofstadter’s 
interest lay in the process by which said results 
were obtained.

More precisely, it was the idiosyncratic 
element of self-reference in Gödel’s proof which 
so captured Hofstadter’s attention. As a matter 
of fact, Hofstadter sees such self-referential 
phenomena everywhere, christening this general 
abstract structure with the phrase ‘Strange loop’, 
and believes it to be the essential mechanism 
out of which the psychological self emerges. 
For Hofstadter, the real takeaway from Gödel 
was the idea that any ‘system’, if it surpasses 
a certain level of complexity, has the ability to 
refer to itself.

The way the system had two ‘levels’ of 
description (for example, authors had instantiating 
the provability predicate both PT and PT) is not 
something unique to it: One deals with multiple 
levels of description and representation all the 
time.

Both these levels form a hierarchy in the 
sense that the PT level was, logically speaking, 
constructed after the—which is to say, based 
on the—PT one via the Gödel numbering and 
arithmetization.

But the crucial property of this hierarchy 
would be its tangledness: Not only is the PT level 
determined by the PT level, but also, the PT level, 
in its own way, determines the PT level; for after 
arithmetization, it was in the arithmetically-
encoded description that one constructed  
PT, before importing it back to the PT level and 
considering the implications of this crossing-over.

Hofstadter also refers to this as a ‘tangled 
hierarchy’. One of his favorite illustrations to 
offer as an example is the lithograph ‘Drawing 
Hands’ by Dutch artist M.C. Escher.

In terms of human cognition, Hofstadter’s 
ultimate thesis is that the various phenomena 
emergent from it—ideas, feelings, analogies, and 
finally, self-consciousness—are all based on a 
strange loop, a Gödelian level-crossing, a tangled 
hierarchy involving the neurons of the brain and 
the symbols of the mind.
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