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Spivak’s Calculus on Manifolds, Chapter I

1-1. |x|2 =
∑n
i=1(xi)

2 =
∑n
i=1(|xi|)2 ≤ (

∑n
i=1 |xi|)2 =⇒ |x| ≤

∑n
i=1 |xi|.

1-2. It holds when x, y are linearly dependent and 〈x, y〉 ≥ 0.

1-3. |x − y| = |x + (−y)| ≤ |x| + | − y| = |x| + |y|. Equality holds when x, y are linearly dependent
and 〈x, y〉 ≤ 0.

1-4. |x−y|2 =
∑n
i=1(xi−yi)2 =

∑n
i=1 x

2
i +

∑n
i=1 y

2
i −2

∑n
i=1 xiyi ≥ |x|2 + |y|2−2|x||y| = (|x|−|y|)2 =

||x| − |y||2 =⇒ ||x| − |y|| ≤ |x− y|.

1-5. |z − x| = |(z − y) + (y − x)| ≤ |z − y|+ |z − x|. This says that the sum of two side-lengths of a
triangle cannot be less than the length of the third.

1-7.

1. Suppose T is inner product preserving, that is, 〈T (x), T (y)〉 = 〈x, y〉 for all x, y ∈ Rn. Setting
x = y, we have 〈T (x), T (x)〉 = |T (x)|2 = 〈x, x〉 = |x|2 =⇒ |T (x)| = |x|, that is, T is norm
preserving.

Next, suppose T is norm preserving. 〈Tx, Ty〉 = |Tx+Ty|2−|Tx−Ty|2
4 = |T (x+y)|2−|T (x−y)|2

4 =
|x+y|2−|x−y|2

4 = 〈x, y〉, and we are done.

2. Since T is norm preserving, |T (x)| = 0 =⇒ |x| = 0 =⇒ x = 0. Since the kernel of T consists
of the null vector alone, it is injective.
Now, T−1 is defined only on the image of T. Thus, we can write |T−1(y)| = |T−1(T (x))| = |x| =
|T (x)| = |y| for some x all y, and we are done.

1-8.

1. We know that, if T is norm preserving, T is inner product preserving. Thus, ∠(Tx, Ty) =

arccos( 〈Tx,Ty〉|Tx||Ty| ) = arccos( 〈x,y〉|x||y| ) = ∠(x, y).

2. Suppose |λi| = k for all i. Then, ∠(Txi, Txj) = arccos(
〈Txi,Txj〉
|Txi||Txj | ) = arccos(

k2〈xi,xj〉
k2|xi||xj | ) =

arccos( 〈x,y〉|x||y| ) = ∠(x, y). Thus, T is angle-preserving.

1-9. T (x, y) = (xcosθ + ysinθ,−xsinθ + ycosθ). It suffices to show (by an above exercise) that T
is norm preserving. |T (x, y)|2 = (xcosθ + ysinθ,−xsinθ + ycosθ)(xcosθ + ysinθ,−xsinθ + ycosθ) =
x2cos2θ + y2sin2θ + 2xycosθsinθ + x2sin2θ + y2cos2θ − 2xycosθsinθ = x2 + y2 = |(x, y)|2.

Let x = (a, b). 〈x, Tx〉 = (a, b)(acosθ + bsinθ,−asinθ + bcosθ) = cosθ|(a, b)|2. Thus, arccos( 〈x,Tx〉|x||Tx| ) =

arccos( cosθ|(a,b)|
2)

|(a,b)|2 = θ = ∠(x, Tx).

1-10. Let T = (a1, a2, ...an)T , where each ai is a 1 xm row vector. Then, Th = (〈a1, h〉, ...〈an, h〉)T .|Th| =√∑n
i=1〈ai, h〉2 ≤

√∑n
i=1 |ai|2|h|2 = |h|

√∑n
i=1 |ai|2. Thus, the inequality is satisfied for M =
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√∑n
i=1 |ai|2.

1-11. 〈(x, z), (y, w)〉 = 〈(x1, ...xn, z1, ...zm), (y1, ...yn, w1, ...wm)〉 =
∑n
i=1 xiyi +

∑m
i=1 ziwi = 〈x, y〉 +

〈z, w〉 (where xi, yi, zi, wi ∈ R).
|(x, z)| = |(x1, ...xn, z1, ...zm)| = |

√
x2

1 + ...x2
n + z2

1 + ...z2
m =

√
|x|2|+ |z|2.

1-12. T (x) = T (y) =⇒ φx = φy =⇒ 〈x, z〉 = 〈y, z〉 for all z ∈ Rn. Setting z = (1, 0, ...0), we have
x1 = y1. We can match x, y componentwise in this manner to get x = y. Thus, T is an injective map.

1-13. |x+ y|2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉+ 2〈x, y〉 = |x|2 + |y|2, since the last term vanishes due
to orthogonality.

1-14. Let U =
⋃
α∈∆ Uα, where each Uα is open. Suppose x ∈ U . Then, x ∈ Uα0 for some α0. By

assumption, since Uα0 is open, there exists an open ball around x such that B(x) ⊂ Uα0 ⊂ U . Thus,
U is open.
Next, let U =

⋂
i∈S Ui, where each Ui is open and S is some finite subset of N. Suppose x ∈ U .

Then, x ∈ Ui for all i ∈ S. In every set Ui, there is an open ball around the point, Bri(x) ⊂ Ui. Set
R = min{ri, i ∈ S}. BR(x) will then be a subset of all the sets Ui. Thus, BR(x) ⊂ U , and we are
done.
Each of the sets (− 1

n , 1) is open, but their intersection (as n varies over all the naturals) is [0, 1), which
is not.

1-15. Define S = {x ∈ Rn : |x − a| < r}, and pick an arbitrary point p ∈ S. Thus, |p − a| =
r − ε < r, ε > 0. Consider the open ball B(p, ε2 ). It is clear that B ⊂ S: For any q ∈ B, |q − a| <
|q− p|+ |p− a| ≤ ε

2 + r− ε = r− ε
2 < r. Thus, we have found an open ball around p which is a subset

of S. Since p was taken arbitrarily, this shows that S is open.

1-16.

1. Let S = {x ∈ Rn : |x− 0| ≤ 1} The interior is the set {x ∈ Rn : |x| < 1}. The exterior is the set
{x ∈ Rn : |x| > 1}. The boundary is the set {x ∈ Rn : |x| = 1}.
We only need to prove the third claim. The first two then follow from arguments analogous to
the one in the previous problem.
Pick any arbitrary point p in the third set, and take an open ball around it, B(p, δ), delta > 0.
Consider the line joining the origin and p, {pt : 0 ≤ t ≤ 1}. The distance between the origin and
some point on this line is given by |pt − 0| = |p||t| = |t|; and the distance between p and some
point on this line is given by |pt− p| = |p||1− t| = |1− t|. Now, if |t| < 1, |1− t| < δ, this point
lies in S. Alternatively, if |t| > 1, |1− t| < δ, this point lies in the complement of S. Thus, B is
not a subset of S or its complement, and p is a boundary point.

2. The interior is ∅. The exterior is the set Rn\{x ∈ Rn : |x| = 1}. The boundary is the set
{x ∈ Rn : |x| = 1}. The argument is analogous to the above.

3. Let S denote the given set. The interior is ∅ (from the Archimedean property of the reals). The
set of boundary points is S, since they are not in the interior, and trivially not in the exterior.
Thus, the exterior is Rn\S.

1-19. Let x ∈ [0, 1] be irrational. By the Archimedean property, any open ball around it will have at
least one rational number. Thus, it is a limit point; since A is closed, we conclude that x ∈ A. This
shows that A ⊆ [0, 1].

1-20. If a compact subset is unbounded, we could let B(0, n), n ∈ N be an open cover (since the
union, in fact, equals the space), and it would have no finite subcover (since the set is unbounded),
contradicting compactness. Thus, every compact set is bounded.
Next, we wish to show that if a set K is compact, it is closed. Consider a point y ∈ Rn\K,x ∈ K,
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and take open neighbourhoods Vy, Ux for both such that Vy ∩ Ux = ∅. Now,
⋃
x∈K Ux is an open

cover of K =⇒ it has a finite subcover, Ux1, Ux2, ...Uxm. Consider the corresponding intersection of
V =

⋂m
i=1 Vyi. Clearly, V ∩ K = 0, and so V ⊂ Rn\K and is an open neighbourhood of y. Thus,

Rn\K is open, and it follows that K is closed.

1-21.

1. By assumption, x is not a limit point of A. This means that some open ball around x,B(x, d) is
disjoint from A. By definition, this means |y − x| ≥ d for all y ∈ A.

2. Pick a b ∈ B =⇒ b /∈ A. By the above, this means that some open ball around x,B(x, d)
is disjoint from A; and so, so is Cb = B(b, d) ∩ B. Thus, ∃d > 0 : |y − x| ≥ d for all x ∈ C.
We can find such a ball for each b ∈ B. Moreover, since these balls form an open cover and
B is compact, we can find a finite subcover of the same. The minimum of the radii of these
finitely many open balls yields the required d. (x ∈ B =⇒ x ∈ Cp = B(p, r) ∩ U for some
p ∈ B =⇒ |y − x| ≥ r ≥ d = rmin.)

3. The sets in R2 defined by A = {(x, 1
x ), x ∈ R+}, B = {(0, x), x ∈ R+} provide the required

counterexample.

1-22. Consider an open cover Aα of C such that Aα ⊂ U for each one. Since C is compact, this has a
finite subcover, {A1, ...An}. Consider the compact set D = (A1 ∪ ... ∪ An) ⊂ U . By construction, the
interior of this is a superset of C. Thus, this is the required set.

1-23. First, suppose limx→af
i(x) = bi, i = 1, ...m. So, ∀ε > 0∃δ > 0 such that |x − a| <

δ =⇒ |f i(x) − bi| < ε. Now, |f(x) − b| =
√

(f1(x)− b1)2 + (f2(x)− b2)2 + ...(fm(x)− bm)2 < ε
if |x− a| < δ√

m
.

For the converse, suppose ∀ε > 0∃δ > 0 such that |x−a| < δ =⇒
√

(f1(x)− b1)2 + (f2(x)− b2)2 + ...(fm(x)− bm)2 =
|f(x)− b| < ε. Since |f i(x)− bi| ≤ |f(x)− b|, we have the desired implication.

1-24. The proof is the same as above, except we replace b with f(a).

1-25. |x − a| < δ = ε
M =⇒ |T (x) − T (a)| = |T (x − a)| ≤ M |(x − a)| < M ε

M = ε. Thus, we have
found a δ, given an ε.

1-26.

1. A straight line through the origin is given by the equation y = mx. If m ≤ 0, the whole line lies
in R2 −A. Consider m > 0. In this case, {x ∈ (−m,m), y = mx} gives the required interval.

2. Clearly, f(0, 0) = 0 but for the sequence xi = ( 1
i ,

( 1
i )2

2 ) we have limi→∞f(xi) = 1, xi → 0. Thus,
f(x) is not continuous at (0, 0).
On the other hand, gh(t) = f(th) is the restriction of f to some particular straight line through
the origin. From the above, it follows that g is continuous.

1-27. This is clearly a continuous function (it can be seen as the composition of g(x) = x−a, h(x) = |x|,
both continuous functions).
Consider the open set U = (−∞, r) ∈ R. Then, there must be an open set V ∈ Rn such that
f−1(U) = V . But by definition, V = {x ∈ Rn : |x− a| < r}. Hence, proved.

1-28. Since A ⊂ Rn is not closed, we can pick a limit point l /∈ A. Now, the function f : A → R :
f(y) = 1

|y−l| is clearly continuous on A, since it is the composition of continuous functions (k(x) =

x − l, g(x) = 1
x , h(x) = |x|, where the former is continuous because 0 is not in its domain, since by

assumption l /∈ A).
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It remains to be shown that f is unbounded. Since l is a limit point of A, for any M ∈ R, we can find
y ∈ such that |y − l| < M =⇒ 1

|y−l| > M . This completes the proof.

1-29. We know that the image of a continuous function is compact if its pre-image is compact.
Furthermore, we know that a compact set contains its maximum and minimum. (Suppose not, i.e.
suppose sup f(A) /∈ f(A). We know sup A exists since R is complete and the set is bounded. But this
would contradict closedness of f(A), since the supremum is a limit point of the set.) This proves the
claim.
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