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Answer 1. Given: ∀ε > 0 ∃N0 ∈ N such that |fn(x) − fm(x)| < ε ∀n,m > N0∀x, and for each n,
there exists an M ′n such that |fn(x)| ≤M ′n ∀x.
To prove: |fn(x)| ≤M ∀n∀x for some M .
We have for all n,m > N0, for all x, |fn(x)| < ε + |fm(x)|. Set M =max{M1,M2, ...Mn−1, ε + Mm},
where Mk is the bound for |fk(x)|. This gives us the required uniform bound.

Answer 2. By definition, we have ∀ε > 0 ∃Nε ∈ N such that |fn(x) − f(x)| < ε ∀n > Nε ∀x, and
similarly for gn and g.
Suppose |fn(x)− f(x)| < ε

2 ∀n > Nf and |gn(x)− g(x)| < ε
2 ∀n > Ng for all x.

Then, |fn(x)−f(x)|+|gn(x)−g(x)| ≥ |fn(x)−f(x)+gn(x)−g(x)| = |(fn(x)+gn(x))−(f(x)+g(x))| <
ε
2 + ε

2 = ε ∀n > max{Nf , Ng}. (Note that we have used the triangle inequality here.) Since Nf , Ng
depended only on ε, so does their maximum. Thus, we conclude that {fn + gn} converges uniformly
to f + g.
Next, suppose that the functions are bounded. This means that fn(x) ≤ M (and so also, f(x) ≤ M)
for some M ∈ R for all n and x, and similarly for gn(x).
Suppose |fn(x)− f(x)| < ε

2M ∀n > Nf and |gn(x)− g(x)| < ε
2M ∀n > Ng for all x.

Then, |fn(x)gn(x)−f(x)g(x)| ≤ |fn(x)gn(x)−fn(x)g(x)|+ |fn(x)g(x)−f(x)g(x)| ≤M |fn(x)−f(x)|+
M |gn(x)−g(x)| < M ε

2M +M ε
2M = ε for all n > max{Nf , Ng}. This shows that the uniform converges

uniformly.

Answer 3. We define {fn(x)} = {gn(x)} = x+ 1
n .

Define F (x) = x, x ∈ R. Then, |fn(x) − F (x)| = | 1n | < ε =⇒ n > 1
ε . Thus, |fn(x) − F (x)| < ε

∀n > N0, where N0 = 1 + [ 1ε ]. Since N0 is clearly independent of x, we conclude {fn} converges
uniformly to F .
{f2n} = x2 + 2 xn + 1

n2 . Define F (x) = x2, x ∈ R. Then, |f2n(x)− F (x)| = |2 xn + 1
n2 | < 2x+1

n < ε for all
n > N0, where N0 = 1 + [ 2x+1

ε ]. Thus, it converges pointwise.
Suppose now there existed an Nε ∈ N such that |2 xn + 1

n2 | < ε ∀n > Nε ∀x. But we see that upon

putting n = Nε + 1, x = εNε+1
2 , we get ε+ 1

Nε+1 < ε, a contradiction. We conclude that {f2n} does not
converge uniformly to F on R.

Answer 4. The series of functions fn(x) = 1
1+n2x converges pointwise and absolutely for all x ∈

R\{0,− 1
n2 |n ∈ N}.

That it does for x ∈ R+ follows from the convergence of the series 1
n2 . That it does for x ∈

R−\{− 1
n2 |n ∈ N} follows from the fact that it converges absolutely (since | 1

1+n2x | ≤
4

3n2|x| for n2 ≥ 4
|x| ,

and the RHS converges).
It does not converge for x = 0, x = {− 1

n2 |n ∈ N} because we have either fn(x) = 1, which diverges, or
fn(x) = 1 1

1−(n2 1
n2 )

for one term in the series, which is undefined.
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We claim that the series converges uniformly on the interval E = (c,∞) with c > 0.
It is clear that |fn(x)| ≤ 1

1+n2c . Also, the series 1
1+n2c converges (this follows from the convergence of

the series 1
n2 . Thus, it follows from Weierstrass’ M test that the given series converges in the interval

(c,∞).
It does not, however, converge uniformly on (0,∞). To see this, for an N0N, we can set n = N0+1,m =
N0, x = 1

(N0+1)2 and see that it fails to be uniform Cauchy.

We claim that the series converges uniformly also on the interval E = (−∞,−1). Notice that
supx∈E |fn(x)| ≤ | 1

n2−1 |. Thus, it follows from Weierstrass’ M test that the given series converges
uniformly in the interval (−∞,−1).
It also converges uniformly on any interval of the form (− 1

k2 ,−
1

(k+1)2 ), k ∈ N. One may apply the

M-test here as well with Mn = (k+1)2

n2−(k+1)2 .

It is now evident that f is continuous but not bounded where the series converges.

Answer 5. {fn(x)} converges to 0 for all x. This is because, for a given x > 0, we can always find
N0 such that 1

n < x for all n > N0, and for x ≤ 0, we always have x < 1
n+1 . Since F (x) = 0 is a

continuous function, we have shown that {fn(x)} converges to a continuous function.
However, the sequence does not converge uniformly. For any given positive integer N0, we can always
find x = 1

(N0+1)+ 1
2

such that |fN0+1(x)| = sin2 πx = 1 > ε = 1
2 .

From the above considerations, it is clear that
∑
fn(x) =

∑
|fn(x)| = sin2 πx for 0 < x < 1, and 0

elsewhere, allowing us to conclude that it converges absolutely. However, since the function the series
converges to is discontinuous at 0, we conclude that the function does not converge uniformly on any
interval which has 0 as a limit point.

Answer 6.
∑∞
n=1|fn(x)| =

∑∞
n=1( x

2

n2 + 1
n ). We know that 1

n does not converge. Thus, the series does
not converge absolutely for any x (by comparison test).

Consider the interval E = [a, b]. Now,
∑∞
n=1|fn(x)| =

∑∞
n=1(−1)n( x

2

n2 + 1
n ) =

∑∞
n=1(x2 (−1)n

n2 ) +

( (−1)n
n ) = x2

∑∞
n=1

(−1)n
n2 +

∑∞
n=1

(−1)n
n (since both the series converge).

Since the second series is also independent of x, we can say immediately that it converges uniformly.

Let us call the first series hn(x). In this case, we have |hn(x)| ≤ k2

n2 , where k = max{|a|, |b|}. But also,

we know that the series k2

n2 converges. Thus, by the M-test, hn(x) converges uniformly.
The sum of two uniformly convergent series converges uniformly. Hence, proved.

Answer 7. We claim that {fn(x)} converges uniformly to f(x) = 0.
It is clear that for all ε > 0, we have | x

1+nx2 | < ε for all n > N0, where N0 =max{1, 1 + [xε − 1]}. Thus,
we have pointwise convergence.
Note that supx∈R|fn(x)− f(x)| = 1

2
√
n
→ 0 as n→∞ (f ′n(x) = 0 at x = 1√

n
). We conclude that the

function converges uniformly.

f ′n(x) = 1−nx2

(1+nx2)2 → 0 as n→∞ for x 6= 0, and = 1 if x = 0. Furthermore, f ′(x) = 0. Thus, we have

the required equation.

Answer 8. It is clear that supx∈(a,b)|fn(x)| ≤ |cn|. Furthermore, we know that
∑
|cn| converges.

From the M-test, it follows that the series fn(x) converges uniformly in the given interval.
We now prove continuity at x ∈ (a, b) 6= xn∀n ∈ N:
sn(x) = kn ≤

∑n
k=1 ck. (Some of the points in the sequence before xn may have been > x.) Let

min{|x − xk|}nk=1 = k > 0 (by assumption). For every ε > 0, there exists a δ > 0 such that
|y − x| < δ =⇒ |sn(y) − kn| < ε. This is true, because one can pick any δ < k, making the
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RHS 0 < ε. Thus, sn(x) is continuous at the assumed x.
We know that a series of continuous functions, if it converges uniformly, converges to a continuous
function. Thus, from the continuity of each {sn(x)}, the continuity of f(x) for every x 6= xn has been
proven.

Answer 9. For every δ > 0, there exists an Nδ ∈ N such that |xn − x| < δ for all n > Nδ. For every
ε
2 > 0, there exists an Nε ∈ N such that |fn(x)− f(x)| < ε

2 for all n > Nε, for all x.
Furthermore, since the function is continuous, for every ε

2 > 0, there exists a δ′ > 0 such that
|xn − x| < δ′ =⇒ |fn(xn)− fn(x)| < ε

2 .
|fn(xn)− f(x)| ≤ |fn(xn)− fn(x)|+ |fn(x)− f(x)| < ε

2 + ε
2 = ε for all n >max{Nδ′ , Nε}.

The converse is not true in general. Let fn(x) = x
n , xn = x on R. Then limn→∞fn(xn) = 0, but it

does not converge uniformly.

Answer 20. It is clear that this condition means
∫ 1

0
f(x)p(x)dx = 0, where p(x) is any polynomial.

By the Weierstrass approximation theorem, there exists a sequence of polynomials {pn(x)} such that
the uniform limit of it on [0, 1] is f(x). Therefore, limn→∞pn(x)f(x) = f(x)limn→∞pn(x) = f2(x)
uniformly on [0, 1].

By the uniform convergence theorem
∫ 1

0
f2(x)dx = limn→∞

∫ 1

0
pn(x)f(x) = 0 =⇒ f2(x) = 0 =⇒

f(x) = 0. Hence, proved.
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