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Answer 1. |f(z) = f(y)] < (z—y)? = o~y = [TULE| = g(y) < |(y—2)| = limya0(y) <
limy_g|(y—2)| =0 = f’(z) = 0 everywhere. It is easy to see that the mean value theorem implies
that it is a constant function.

Answer 2. Given: f’(x) > 0 on (a,b) and g is the inverse function of f.

By the mean value theorem, ¢ € (a,x),z > b such that f(z)— f(a) = (x—a)f'(c). But since f'(c¢) > 0
and = > a, we have f(x) > f(a) = f is strictly increasing on (a, b).

We know that, if f is a continuous bijection, so is its inverse. f(z) € (o, 8) = x € (a,b) such that

x = g(f(x)). Consider ¢'(f(x)) limp_g M. Suppose now that g(f(x)+h) = x4+ k. Then,

. x+k—x _ 7: k _j; k
we have limy 05— = limp o7 = lzmhﬂoif(ﬂk)ff(z).

But now note that, by continuity of g, h - 0 = k — 0. Thus, our limit becomes limkﬁom =
1

f(x)
Hence, proved.

Answer 3. We know that f’(z) #0onR = f is one-one. Therefore, we set f/(x) = 1+eg’(z) # 0.
If g/(z) > 0, this is ensured, since € > 0. —M < —z2=¢'(z) <0 = 1—ez#0 = e# 1. If f'(z)
is ever > 0, we want to ensure it always remains > 0 = € < ﬁ Otherwise, € can be any real number.

Answer 4. Consider the polynomial p(z) = Cox + C12:1:2 + ... Clearly, p(0) =p(1) =0 = p'(x) =0

for some = € (0,1) (by Rolle’s theorem). Since p’(x) is the given polynomial, this completes the proof.

Answer 5. By the mean value theorem, there exists an xg € (x, 2 + 1) such that f(x 4+ 1) — f(z) =
1/ (o). But also, for all € > 0 there exists an r such that |f/(zo)| < € for all zg >r = for all e >0
there exists an r such that |f(z + 1) — f(x)| < e for all x > r = for all € > 0 there exists an r such
that |g(z) — 0| < € for all z > r. Hence, proved.

Answer 6. g(z) = 12 — ¢(z) = w We need to show that xf/(x) — f(x) > 0 for > 0.

Consider any interval (0,a),a > 0. By the mean value theorem, @ = f'(c) for some ¢ € (0,a). But

since f'(z) is increasing, f'(a) > f'(¢) = f'(a) > @ = af'(x) > f(z) for all z > 0. Hence,
proved.
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Answer 7. lzmt_m% = lzmt_m% (since f(x) = g(x) = 0) = limy—, g(é:g(w) = lz’m;z g(tiig(w) =
I'(z)
g'(x)"
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Answer 9. Define p(z) = roa

3 z=0

It is clear from what is given that ¢ is a continuous function. Thus, by the definition of the derivative,

f(zx) is differentiable at = 0 and f'(0) = 3.

Answer 12. For z > 0, f'(z) = 322, f"(x) = 62. For x < 0, f'(z) = =322, f"(z) = —6x. Since
left-hand and right-hand derivative are equal at 0, the limit and the derivative exists.
However, f"(x) = 6,2 > 0 and —6,2 < 0. Since this has no limit at 0, it does not exist.

Answer 13.

1. To show that f is continuous at 0, we want for all € > 0 a § > 0 such that |z| <§ = |f(z)| =

|m“sm(ﬁ)| < |2%] < e. For this, we observe that for a > 0, [£%] = |2|* and thus set § < €.

To prove that the function is discontinuous for a < 0, we set 2 = ((2n + 1)%)%. Then |f(z)| =

|ﬁ|%ﬂsm(|(2n+l)g|) > 1 forn > [1(2)%°]. Let 21 be the corresponding number. Further,
for any & > 0, let us consider an x5 < §. Choosing the minimum of x1, x5 satisfies the inequality
for any § > 0 for e = % Hence, proved.

2. ¢(0T) = %j%)_o = 2% 1sin(2). Similarly, ¢(07) = —(2* *sin(=)). For the limit to exist,
the left-hand limit and the right-hand limits must exist and be equal. This, in turn, is possible
if and only if @ > 1 (from above).
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3. This is clear from the form of the derivative, f'(z) = sgn(z)[a|z|* Lsin(|z|~¢)—cz cos(|z|~9)].

4. At a = 1 + ¢, the derivative will have a discontinuity of the second kind at = = 0, while at
a > 1+ ¢, it tends to 0 as z tends to 0 and is thus continuous. (Note that ¢ < 1+ ¢ is not
possible since it must be bounded.)

The remaining parts are virtually identical.
Answer 14.

1. Suppose f is convex on (a,b). Then, V1, zo € (a,b), f(tx14+(1—1t)x2) < tf(x1)+(1—t)f(z2)Vt €
[0,1]. Let t = 5,21 = x,22 = x+2h. Then, 2f(z+h) < f(z)+ f(z+2h) = f(z+h)— f(z) <
f(z4+2h)— f(z+h). If we set 1 = x+h, z2 = x+3h, then we similarly get f(x+2h)— f(z+h) <
f(xz+3h) — f(x + 2h).

Setting h = #2-%L and iterating this n times, we get f(z1 4+ h) — f(21) < f(z2 + h) — f(22).

Dividing both sides by h and letting n — oo, we get f/(x1) < f’(x2). Thus, f'(x) is monotonically

increasing on (a, b).

Next, suppose f’ is monotonically increasing on (a,b). Then, f'(d) > f'(c),c € (x,2),d € (2,y).
fW=fz) 5 [E)=f(=@)

y—z = z—x

Using the mean value theorem, we have

Substituting ¢ = == into this gives us f(tz1 + (1 — t)z2) < tf(21) + (1 — 1) f(z2).

2. The corresponding result for f”(z) follows from the fact that if f”(z) exists, then f'(x) is
monotonically increasing if and only if f”(z) > 0.

Answer 15. By Taylor’s theorem, for 8 = 2+2h, a = z, we have f(z+2h) = f(2)+2hf'(x)+2h2f"(c),
with a <z <c <z +2h.

Rearranging, we get f'(z) = o [f(z + 2h) — f(2)] — hf"(c) = f'(z) < Mo+ hM, = hM,; <
My + h2M2 - h2M2 — hM; + My > 0.

For this quadratic in h to be nonnegative everywhere, D <0 — M12 < 4MyM>. Hence, proved.



Answer 16. From above, we have f'(z) = 5-[f(z + 2h) — f(z)] — hf”(c). Taking the limit z — oo
on both sides, we get lim, oo f'(z) = —hf”(c). Taking the limit h — 0 on both sides, we now get
limp—olimy oo f'(2) = limz oo f'(x) = 0. Hence, proved.
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Answer 17. By Taylor’s theorem, for 5 = 1,a = 0, we have f(1) = f(0) + f'(0) + # + # =

1”: @”—!— w for some”c € (0, }) Similarly, for 8 = —1,a = 0, we have f(—1) = —f(0) — f/(0) +
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5 for some d € (—1,0). Subtracting the two equations, we get
")+ f""(d)=6 = f""(x) > 3 for some z € (—1,1).



