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Answer 1. |f(x)−f(y)| ≤ (x−y)2 = |x−y|2 =⇒ | f(y)−f(x)y−x | = φ(y) ≤ |(y−x)| =⇒ limy→xφ(y) ≤
limy→x|(y− x)| = 0 =⇒ f ′(x) = 0 everywhere. It is easy to see that the mean value theorem implies
that it is a constant function.

Answer 2. Given: f ′(x) > 0 on (a, b) and g is the inverse function of f .
By the mean value theorem, ∃c ∈ (a, x), x ≥ b such that f(x)−f(a) = (x−a)f ′(c). But since f ′(c) > 0
and x > a, we have f(x) > f(a) =⇒ f is strictly increasing on (a, b).
We know that, if f is a continuous bijection, so is its inverse. f(x) ∈ (α, β) =⇒ x ∈ (a, b) such that

x = g(f(x)). Consider g′(f(x)) limh→0
g(f(x)+h)−g(f(x))

h . Suppose now that g(f(x) +h) = x+k. Then,

we have limh→0
x+k−x

h = limh→0
k
h = limh→0

k
f(x+k)−f(x) .

But now note that, by continuity of g, h→ 0 =⇒ k → 0. Thus, our limit becomes limk→0
k

f(x+k)−f(x) =
1

f ′(x) .

Hence, proved.

Answer 3. We know that f ′(x) 6= 0 on R =⇒ f is one-one. Therefore, we set f ′(x) = 1 + εg′(x) 6= 0.
If g′(x) > 0, this is ensured, since ε > 0. −M < −z = g′(x) < 0 =⇒ 1− εz 6= 0 =⇒ ε 6= 1

z . If f ′(x)
is ever > 0, we want to ensure it always remains > 0 =⇒ ε < 1

M . Otherwise, ε can be any real number.

Answer 4. Consider the polynomial p(x) = C0x+ C1x
2

2 + .... Clearly, p(0) = p(1) = 0 =⇒ p′(x) = 0
for some x ∈ (0, 1) (by Rolle’s theorem). Since p′(x) is the given polynomial, this completes the proof.

Answer 5. By the mean value theorem, there exists an x0 ∈ (x, x + 1) such that f(x + 1) − f(x) =
f ′(x0). But also, for all ε > 0 there exists an r such that |f ′(x0)| < ε for all x0 > r =⇒ for all ε > 0
there exists an r such that |f(x+ 1)− f(x)| < ε for all x > r =⇒ for all ε > 0 there exists an r such
that |g(x)− 0| < ε for all x > r. Hence, proved.

Answer 6. g(x) = f(x)
x =⇒ g′(x) = xf ′(x)−f(x)

x2 . We need to show that xf ′(x)− f(x) > 0 for x > 0.

Consider any interval (0, a), a > 0. By the mean value theorem, f(a)
a = f ′(c) for some c ∈ (0, a). But

since f ′(x) is increasing, f ′(a) > f ′(c) =⇒ f ′(a) > f(a)
a =⇒ xf ′(x) > f(x) for all x > 0. Hence,

proved.

Answer 7. limt→x
f(t)
g(t) = limt→x

f(t)−f(x)
g(t)−g(x) (since f(x) = g(x) = 0) = limt→x

f(t)−f(x)
t−x

g(t)−g(x)
t−x

=
limt→x

f(t)−f(x)
t−x

limt→x
g(t)−g(x)

t−x

=

f ′(x)
g′(x) .
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Answer 9. Define ϕ(x) =

{
f(x)−f(a)

x−a x 6= 0

3 x = 0
It is clear from what is given that ϕ is a continuous function. Thus, by the definition of the derivative,
f(x) is differentiable at x = 0 and f ′(0) = 3.

Answer 12. For x > 0, f ′(x) = 3x2, f ′′(x) = 6x. For x < 0, f ′(x) = −3x2, f ′′(x) = −6x. Since
left-hand and right-hand derivative are equal at 0, the limit and the derivative exists.
However, f ′′′(x) = 6, x > 0 and −6, x < 0. Since this has no limit at 0, it does not exist.

Answer 13.

1. To show that f is continuous at 0, we want for all ε > 0 a δ > 0 such that |x| ≤ δ =⇒ |f(x)| =
|xasin( 1

|x|c )| ≤ |xa| ≤ ε. For this, we observe that for a > 0, |xa| = |x|a and thus set δ ≤ ε 1
a .

To prove that the function is discontinuous for a ≤ 0, we set 1
x = ((2n + 1)π2 )

1
c . Then |f(x)| =

| 2
(2n+1)π |

−a
c sin(|(2n+1)π2 |) >

1
2 for n > [ 1π (2)

−c
a ]. Let x1 be the corresponding number. Further,

for any δ > 0, let us consider an x2 < δ. Choosing the minimum of x1, x2 satisfies the inequality
for any δ > 0 for ε = 1

2 . Hence, proved.

2. φ(0+) =
xasin( 1

xc )−0
x−0 = xa−1sin( 1

xc ). Similarly, φ(0−) = −(xa−1sin( 1
xc )). For the limit to exist,

the left-hand limit and the right-hand limits must exist and be equal. This, in turn, is possible
if and only if a > 1 (from above).

3. This is clear from the form of the derivative, f ′(x) = sgn(x)[a|x|a−1sin(|x|−c)−cxa−1−ccos(|x|−c)].

4. At a = 1 + c, the derivative will have a discontinuity of the second kind at x = 0, while at
a > 1 + c, it tends to 0 as x tends to 0 and is thus continuous. (Note that a < 1 + c is not
possible since it must be bounded.)

The remaining parts are virtually identical.

Answer 14.

1. Suppose f is convex on (a, b). Then, ∀x1, x2 ∈ (a, b), f(tx1+(1−t)x2) ≤ tf(x1)+(1−t)f(x2)∀t ∈
[0, 1]. Let t = 1

2 , x1 = x, x2 = x+2h. Then, 2f(x+h) ≤ f(x)+f(x+2h) =⇒ f(x+h)−f(x) ≤
f(x+2h)−f(x+h). If we set x1 = x+h, x2 = x+3h, then we similarly get f(x+2h)−f(x+h) ≤
f(x+ 3h)− f(x+ 2h).
Setting h = x2−x1

n and iterating this n times, we get f(x1 + h) − f(x1) ≤ f(x2 + h) − f(x2).
Dividing both sides by h and letting n→∞, we get f ′(x1) ≤ f ′(x2). Thus, f ′(x) is monotonically
increasing on (a, b).
Next, suppose f ′ is monotonically increasing on (a, b). Then, f ′(d) ≥ f ′(c), c ∈ (x, z), d ∈ (z, y).

Using the mean value theorem, we have f(y)−f(z)
y−z ≥ f(z)−f(x)

z−x .

Substituting t = y−z
y−x into this gives us f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

2. The corresponding result for f ′′(x) follows from the fact that if f ′′(x) exists, then f ′(x) is
monotonically increasing if and only if f ′′(x) > 0.

Answer 15. By Taylor’s theorem, for β = x+2h, α = x, we have f(x+2h) = f(x)+2hf ′(x)+2h2f ′′(c),
with a < x < c < x+ 2h.
Rearranging, we get f ′(x) = 1

2h [f(x + 2h) − f(x)] − hf ′′(c) =⇒ f ′(x) ≤ M0

h + hM2 =⇒ hM1 ≤
M0 + h2M2 =⇒ h2M2 − hM1 +M0 ≥ 0.
For this quadratic in h to be nonnegative everywhere, D ≤ 0 =⇒ M2

1 ≤ 4M0M2. Hence, proved.
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Answer 16. From above, we have f ′(x) = 1
2h [f(x + 2h) − f(x)] − hf ′′(c). Taking the limit x → ∞

on both sides, we get limx→∞f
′(x) = −hf ′′(c). Taking the limit h → 0 on both sides, we now get

limh→0limx→∞f
′(x) = limx→∞f

′(x) = 0. Hence, proved.

Answer 17. By Taylor’s theorem, for β = 1, α = 0, we have f(1) = f(0) + f ′(0) + f ′′(0)
2 + f ′′′(c)

6 =⇒
1 = f ′′(0)

2 + f ′′′(c)
6 for some c ∈ (0, 1). Similarly, for β = −1, α = 0, we have f(−1) = −f(0)− f ′(0) +

f ′′(0)
2 + f ′′′(d)

6 =⇒ 0 = f ′′(0)
2 − f ′′′(d)

6 for some d ∈ (−1, 0). Subtracting the two equations, we get
f ′′′(c) + f ′′′(d) = 6 =⇒ f ′′′(x) > 3 for some x ∈ (−1, 1).
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