The Real and Complex Number Systems

Aditya Dwarkesh

June 2021

Answer 1. Suppose $r + x = \frac{p}{q}$ for some integral p, q and rational r. Then, $x = \frac{p - qr}{r}$, contradicting its irrationality. Similarly, if $rx = \frac{p}{q}$ for some integral p, q, then $x = \frac{p}{qr}$, contradicting its irrationality.

Answer 2. $x = \sqrt{12} = 2\sqrt{3}$. Since 2 is rational and $\sqrt{3}$ is irrational, x is irrational (from the previous problem).

Answer 3.

- 1. Multiply both sides by $\frac{1}{x}$. Axioms 3, 4 and 5 are used here.
- 2. Apply the above with z = 1.
- 3. Apply the above with $z = \frac{1}{x}$.
- 4. Axiom 5 on $\frac{1}{r}$.

Answer 4. By the definition of upper and lower bounds, we have $x \in E$ such that $\alpha \le x \le \beta$. By the transitivity of ordering, we have $\alpha \le \beta$.

Answer 5. Let inf A = l. We have to show that $\sup -A = -l$. Note that $x \ge y \implies x - x - y \ge y - x - y \implies -y \ge -x$.

Therefore, $l \le x \forall x \in A \implies -l \ge -x \forall x \in A$. This shows that -l is an upper bound of -A. Suppose -a < -l is the supremum of -A (and so, that $-a \ge -x \forall x \in A$). This means that $x > a > l \forall x \in A$, contradicting the fact that inf A = l. Hence, proved.

Answer 6.

- 1. We use the fact that $(b^x)^y = b^{xy}$ for rationals x, y. $((b^m)^{\frac{1}{n}})^{nq} = b^{mq}$. But also, $((b^p)^{\frac{1}{q}})^{nq} = b^{np} = b^{mq}$. By uniqueness of nth root, we have the desired equality.
- 2. Let $r = \frac{p}{q}$, $s = \frac{m}{n}$. Then $r + s = \frac{np + mq}{nq}$. Therefore, $b^{r+s} = (b^{np + mq})^{\frac{1}{nq}} = b^{\frac{p}{q}}b^{\frac{m}{n}} = b^{rs}$. Hence, proved.
- 3. First, we prove that b^r is an upper bound. It suffices to show that $\alpha < \beta \implies x^{\alpha} < x^{\beta}, x > 1, \alpha, \beta \in \mathbb{Q}$.

Suppose instead that $x^{\alpha} > x^{\beta}$. Let n be the product of the denominators of α, β . Then $x^{n(\alpha-\beta)} \ge 1$. However, $n(\alpha-\beta)$ is a negative integer. This is a contradiction.

Next, suppose that there exists an upper bound x such that $x < b^r$. But since r is rational, $b^r \in B(r)$, and so x cannot be an upper bound.

4. Note that $b^{x+y} = \sup B(x+y)$, where B(x+y) is the set of all numbers $b^t, t < x + y$. Further, we know that $b^{r+s} = b^r b^s$ for rationals r, s.

We have to show that sup $B(x)*\sup B(y) = \sup B(x+y)$.

First, we show that $B(x+y) \leq \sup B(x) * \sup B(y)$. Suppose $r < x, s < y \implies r+s < x+y$. $b^r b^s = b^{r+s} < \sup B(x) * \sup B(y), b^r \in B(x), b^s \in B(y), b^{r+s} \in B(x+y)$. Thus, $\sup B(x) * \sup B(y)$ is an upper bound for B(x+y).

Furthermore, $a < \sup B(x) * \sup B(y) \implies \frac{a}{\sup B(x)} < m < \sup B(y)$, where $m = \frac{1}{2}(\frac{a}{\sup B(x)} + \sup B(y))$. Thus, there exists $b^r \in B(x), b^s \in B(y)$ such that $\frac{a}{m} < b^r, m < b^s \implies (\frac{a}{m})m < b^rb^s = b^{r+s} \in B(x+y) \implies a$ cannot be an upper bound to B(x+y). Hence, proved.

Answer 7.

- 1. We prove this by induction. For n=1, the equation reads $b-1 \ge b-1$, which is true. Now, suppose it is true for some n. $b^{n+1}-1=b(b^n-1)+(b-1)=n(b-1)+(b-1)$ (by induction hypothesis) =(n+1)(b-1). Hence, proved.
- 2. Setting $b^n = a$ yields $a 1 \ge a^{\frac{1}{n}} 1$.
- 3. We have $n \ge \frac{b-1}{t-1}$. But also, $\frac{b-1}{h^{\frac{1}{n}}-1} \ge n$. Thus, $\frac{b-1}{h^{\frac{1}{n}}-1} > \frac{b-1}{t-1} \implies b^{\frac{1}{n}} < t$.
- 4. Setting $t = \frac{y}{b^w}$, an application of the above yields, for sufficiently large n and $y > b^w$, $b^{w + \frac{1}{n}} < y$.
- 5. Setting $t = \frac{b^w}{y}$, an application of the above yields, for sufficiently large n and $y < b^w$, $b^{w-\frac{1}{n}} > y$.
- 6. Suppose $b^x < y$. This means that, by 4, $b^{x+\frac{1}{n}} < y$ for large n, contradicting the fact that x is an upper bound. Suppose $b^x > y$. Then, by 5, $b^{x-\frac{1}{n}} > y$ for large n, contradicting the fact that x is the smallest upper bound. Thus, $b^x = y$.
- 7. Suppose z > x. Then, $b^z = b^{z+x-x} = b^x b^{z-x} > b^x$. Similarly, $b^z < y$ for z < x. Thus, x is unique.

Answer 8. We know that, in any ordered field, $x^2 > 0 \ \forall x$. Setting x = i, we have -1 > 0. But also, $x > 0 \implies -x < 0$. Thus, $1 = (1)^2 < 0$, a contradiction.

Answer 9.

- 1. We have $z, w \in \mathbb{C}$. If a = c, b = d, then z = w. Else, if a = c, b < d or b > d, then z < w or z > w respectively. Else, if a < c or a > c, then z < w or z > w respectively. Since we know that \mathbb{R} is an ordered set, this covers all the possibilities. Therefore, we have either z = w, z > w or z < w.
- 2. This follows similarly from the order of \mathbb{R} .

Answer 10. $z^2 = a^2 - b^2 + 2abi = u + \sqrt{|w|^2 - u^2}i = u + \sqrt{u^2 + v^2 - u^2}i = u + i|v| = u + iv = w$ for $v \ge 0$. $\overline{z}^2 = a^2 - b^2 - 2abi = u - \sqrt{|w|^2 - u^2}i = u - i|v| = u - i(-v) = u + iv = w$ for $v \le 0$.

Answer 11. Let z = x + iy, w = a + ib, $a^2 + b^2 = 1$. We want ra = x, $rb = y \implies \frac{x}{a} = \frac{y}{b}$. Setting $a = \frac{x}{\sqrt{x^2 + y^2}}$, $b = \frac{y}{\sqrt{x^2 + y^2}}$ gives us this.

Answer 12. We prove the given by induction.

It is known that $|z_1 + z_2| \le |z_1| + |z_2|$. Suppose now that it is true that $|z_1 + ...z_n| \le |z_1| + ...|z_n|$. $|z_1 + ...z_n + z_{n+1}| \le |z_1 + ...z_n| + |z_{n+1}|$ (n = 2 case) $\le |z_1| + ...|z_n| + |z_{n+1}|$ (by induction hypothesis).

Hence, proved.

Answer 13. Let x = y + z for some z. The triangle inequality gives us $|z + y| \le |z| + |y| \implies |z + y| - |y| \le |z| \implies |x| - |y| \le |x - y|$. If |x| < |y|, this is automatically true. If |x| > |y|, |x| - |y| = ||x| - |y||. Therefore, $||x| - |y|| \le |x - y|$.

Answer 14. 4

Answer 15. The equality holds either if (following the notation of theorem 1.35) B = 0 or $a_j = \frac{C}{B}b_j$ for all j, that is, **a**, **b** are linearly dependent.

Answer 16.

- 1. Set $|\mathbf{w}| = \sqrt{r^2 \frac{d^2}{4}}$, $\mathbf{w} \cdot (\mathbf{x} \mathbf{y}) = 0$, $\mathbf{z} = \frac{\mathbf{x} + \mathbf{y}}{2} + \mathbf{w}$. It is clear that there are infinitely many \mathbf{z} , and it is easy to check that any of them will satisfy the given equation.
- 2. Suppose there exists such a **z**. Then, $d = |\mathbf{x} \mathbf{y}| = |\mathbf{x} \mathbf{z} + \mathbf{z} \mathbf{y}| \le |\mathbf{z} \mathbf{x}| + |\mathbf{z} \mathbf{y}| = 2r$ (by assumption). However, it is given that 2r = d. Thus, $|\mathbf{x} \mathbf{z} + \mathbf{z} \mathbf{y}| = |\mathbf{z} \mathbf{x}| + |\mathbf{z} \mathbf{y}|$. We know from 15 that an equality will only hold if the two vectors are linearly dependent, that is, $\mathbf{x} \mathbf{z} = c(\mathbf{z} \mathbf{y}) \implies \mathbf{z} = \frac{\mathbf{x} + \mathbf{y}}{2}$.
- 3. Suppose there exists such a **z**. Then, $d = |\mathbf{x} \mathbf{y}| = |\mathbf{x} \mathbf{z} + \mathbf{z} \mathbf{y}| \le |\mathbf{z} \mathbf{x}| + |\mathbf{z} \mathbf{y}| = 2r$ (by assumption). However, it is given that 2r < d. This is a contradiction. Thus, no such **z** exists.

For k = 2, there are precisely two solutions in case 1. For k = 1, there are no solutions in case 1. The remaining two cases are unchanged.

Answer 17. $|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2 = \mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{x} - 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} = 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2$. If we take \mathbf{x} , \mathbf{y} to be the sides of a parallelogram, this says that the sum of the squares of the side lengths equals the sum of the squares of the diagonal lengths.

Answer 18. Set $y_i = \frac{(-1)^i}{x_i}$; if $x_i = 0, y_i = 1$. If k is odd, then $y_k = 0$. This is not true for k = 1.

Answer 19. Using the solutions given, squaring and simplifying the two equations shows that they are equivalent.

Answer 20.

- 1. Let $A \subset R$ be a non-empty set bounded above, and denote by γ the union of all the elements of A. γ is non-empty and, since A is bounded above, $\gamma \neq Q$. Furthermore, if $p \in \gamma$, $q < p, q \in Q$, then $q \in A$ (since γ is an upper bound), and so by definition, $q \in \gamma$. Thus, $\gamma \in R$. Suppose $\delta < \gamma$. Then $r \in \gamma, r \notin \delta$ for some r. But $r \in \gamma \implies r \in A$, and so δ is not an upper bound. Thus, γ is a supremum.
- 2. Let $r \in \alpha$. Let 0^* be the cut with largest number 0. r = r + 0. Thus, $r \in \alpha + 0^*$, $\alpha \subset \alpha + 0^*$. For the other way round, notice that $r + s \leq r$ for $r \in \alpha$, $s \in 0^*$. Thus, $\alpha + 0^* \subset \alpha$.
- 3. No set of the form $S = \{r : r < q\}$ will have an additive inverse, since it has no largest element (and thus, nor will it sum with any other cut), whereas 0^* does.

The proof for properties A1-A3 is virtually unchanged from what was given in the text.

Postscript.

Theorem: Every complete ordered field is isomorphic to R.

Proof. Let F be a complete ordered field with operations \bigoplus and \bigcirc . Define the bijection $f: R \to F$ on integers as follows:

- 1. $f(0) = 0_F$
- 2. $f(n) = (1_F \bigoplus 1_F \bigoplus 1_F ... \bigoplus 1_F)$ n times when n > 0
- 3. $f(n) = -(1_F \bigoplus 1_F \bigoplus 1_F ... \bigoplus 1_F)$ n times when n < 0

Define f on rational numbers by $f(\frac{m}{n}) = m_F \odot n_F^{-1}$. (Note that f is now an order-preserving bijection from Q to Q_F .)

Finally, let us define a set $S(r) = \{f(q) : q < r, q \in Q\}$ for any arbitrary real number r, and set $f(r) = \sup S(r)$. We claim that f is the required isomorphism.

- 1. f(x) is well-defined: It is clear that the function is well-defined on all rationals. For the rest, we only need to show that S(r) is non-empty and bounded above; it follows from the assumption of completeness that a supremum exists.
 - It is non-empty because, by the Archimedean property, there exists an integer $n > |r| \implies -n < r \implies n_F \in S(r)$. Since n_F will also be an upper bound on S(r), it is also bounded above.
- 2. f(x) is a bijection:
- 3. $f(x+y) = f(x) \bigoplus f(y)$:
- 4. $f(x * y) = f(x) \bigcirc f(y)$:

Hence, proved.