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Motivation

You can do it!

Kidding. In the award letter, it is said that the motivation for this project ‘comes from
rational homotopy theory. Those cohomology groups appear in the classification of rational
homotopy types having prescribed homotopy groups endowed with Whitehead products.’ Let
us try to understand what all this is about.

Definition. Let X be a simply connected topological space. Then, its rational homotopy
groups are the groups πn+1(X) := πn(X)⊗Z Q.

Definition (Whitehead product). Let f ∈ πl(X), g ∈ πk(X). Furthermore, let ϕ : Sk−l−1 →
Sk ∨ Sl be the attaching map.
Then, the Whitehead product [f, g] := (f ∨ g) ◦ ϕ ∈ πk+l−1(X).

When equipped with the Whitehead product, the groups π∗(X) ⊗Z Q form a graded Lie
algebra; this, we denote by πX.

The following results, due to Quillen, are what tie our project into the broader endeavour of
rational homotopy theory:

Theorem 1.1 (Quillen). Given a simply connected space X, there exists a differential graded
Lie algebra L such that H∗(L) ∼= πX.

Corollary 1.1.1. Given a reduced graded Lie algebra L, there exists a simply connected
space X such that L ∼= πX.
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Category theory

Discussion. We first define some important classes of functors.

• Adjoint functors: Let A F−→ B,B G−→ A be categories and functors. We say that F
is left adjoint to G (G is right adjoint to F) if, for A ∈ A, B ∈ B, there is a natural
isomorphism Hom(F (A), B)→ Hom(A,G(B)).

Let us denote the bijection by ψ, and write ψ(f) = f . Naturality means that, for each
A,B,ψ satisfies the following two conditions:

1. For g : F (A)→ B, q : B → B′, q ◦ g = G(q) ◦ g.
2. For f : A→ G(B), p : A′ → A, f ◦ p = f ◦ F (p).

For the remainder, we shall work in the category of R-modules, where R is a commu-
tative ring.

• Right exact functors: Let 0 → A → B → C → 0 be a short exact sequence
of R−modules. Then, a functor F : ModR → ModR is said to be right exact if
F (A)→ F (B)→ F (C)→ 0 is an exact sequence.
An example is provided by the tensor product F :=M⊗R—, whereM is anR−module.
If this functor is also left exact, i.e., it is exact, we say M is flat.

• Left derived functors: Given a right exact functor F , its left derived functors are the
functors LiF, i ≥ 1, such that the sequence ... → L2F (C) → L1F (A) → L1F (B) →
L1F (C)→ A→ B → C → 0 is exact.
The left derived functors of the tensor product are the Tor functors.

Left exact functors and right derived functors are the obvious extensions of the above def-
inition. An example of a left exact functor is HomR(M,−). If this is also right exact, i.e.,
it is exact, we say M is projective. The right derived functors of Hom are the Ext functors.

Remark. The existence of derived functors is contingent on the category satisfying certain con-
ditions. That of R-modules happens to satisfy them.

Definition (Projective resolution). Let R be a commutative ring and M be a module. Then,
a projective resolution of M is an exact sequence

...→ P2
d2−→ P1

d1−→ P0
ϵ−→M → 0

such that each Pi is a projective R-module.

Remark. One can check that the following construction of left derived functors sastisfies our
original definition.

Definition (Left derived functors). Let F : ModR → ModR be a right exact functor. Given
a module M, let P →M be a projective resolution. We may define, for i ≥ 0,

LiF (M) := Hi(F (P ))

where we take the homology after cutting off F (M).
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Remark. One needs to briefly check that F (P ) is a chain complex before defining homology
groups. Let us do this explicitly. The sequence at hand is as follows:

...→ F (P2)
F (d2)−−−→ F (P1)

F (d1)−−−→ F (P0)→ 0

Now, F (di) ◦ F (di+1) = F (di ◦ di+1) = F (0) (exactness of projective resolution) = 0. Thus, we
have a chain complex on our hands, and taking homology makes sense.
Also, note that F (P0)/Im(F (d1)) ∼= F (P0)/ker(F (ϵ)) (right exactness) ∼= F (M) (right exactness;
first isomorphism theorem). Therefore, H0(F (P )) = L0(F (M)) ∼= F (M).

Lemma 2.2. Every R-module M has a projective resolution.

Lemma 2.3. If P →M,Q→M are two projective resolutions, then Hi(F (P )) ∼= Hi(F (Q)).

Remark. Lemma 1.1 ensures existence of the left derived functors, and lemma 1.2 ensures unique-
ness.

Example. Let us first clarify notation. When we write TorRn (A,B), we mean the nth Tor
group of B for the right exact functor A⊗R—. We will now compute the Tor groups of an
arbitrary abelian group (Z-module) B corresponding to Zp.
As such, we would have to begin with a projective resolution for B. However, it turns
out that TorRn (A,B) = TorRn (B,A) (although this is non-trivial!). (To put it another way,
Ln(A ⊗R −)(B) ∼= Ln(− ⊗R B)(A).) Therefore, we can work with functor B⊗Z— and
module Zp instead.
A projective resolution of Zp is the following:

0→ Z p−→ Z→ Zp → 0

(Recall that Z is projective.)
Acting with the relevant functor, using R ⊗M ∼= M and discarding the last term, we get
the following chain complex:

0→ B
p−→ B → 0

Completing the computation of the homology groups, we finally have
TorZ0 (Zp, B) = B/pB(= Zp ⊗B),TorZ1 (Zp, B) = {b ∈ B : pb = 0},TorZn(Zp, B) = 0, n ≥ 2.

Lemma 2.4. Projective modules are flat.

Proof. Let M be a projective R−module. If we can show that TorRn (M,A) = 0 for all n ≥ 1
and R−modules A, flatness follows definitionally.
But since M is projective, its projective resolution is simply 0→M

id−→M → 0. Upon applying
the functor and discarding the end, we simply have 0→M⊗A→ 0, which has trivial homology
groups of order > 0. Hence, proved.

Remark. More generally, if A is a projective module, LiF (A) = 0, i > 0.
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Discussion. Our understanding of projective modules was based on the left-exactness of
the functor HomR(M,−). As it so happens, the functor HomR(−,M) is also left exact.
However, a different class of modules make it exact. If HomR(−,M) is exact for some
module M , we say M is injective.

Definition (Injective resolution). Let R be a commutative ring and M be a module. Then,
an injective resolution of M is an exact sequence

0→M
ϵ−→ I0

d1−→ I1
d2−→ I2 → ...

such that each Ii is an injective R-module.

Definition (Right derived functors). Let F : ModR → ModR be a left exact functor. Given
a module M, let M → I be an injective resolution. We may define, for i ≥ 0,

RiF (M) := H i(F (I))

where we take the cohomology after cutting off F (M) from the cochain complex.

Remark. The following results will carry forward from the discussion on left derived functors:

• Right derived functors exist and are unique.

• R0(F (M)) ∼= F (M).

• If I is an injective module, Ri(F (I)) = 0, i > 0.

Example. Let us compute ExtnZ(Zp, B), where B is an arbitrary abelian group. The notation
used emulates that of Tor.
We can begin with a projective resolution of Zp (see remark below for clarification), given
by the following:

0→ Z p−→ Z→ Zp → 0

Next, we act on this with the functor Hom(−, B). Using the fact that Hom(Z, B) ∼= B, the
following cochain complex is the relevant one:

0← B
p←− B ← 0

Completing the computation of the cohomology groups, we finally have
Ext0Z(Zp, B) = {b ∈ B : pb = 0} = Hom(Zp, B),Ext1Z(Zp, B) = B/pB,ExtZn(Zp, B) =
0, n ≥ 2.

Remark. Instead of starting with an injective resolution for B, we have worked with a projective
resolution for Zp. The following facts validate this switch:

• R∗Hom(A,−)(B) ∼= R∗Hom(−, B)(A)

• Hom(−, B) is a contravariant functor

• Injective resolutions in the opposite category are equivalent to projective resolutions in the
original category.

Theorem 2.5. If F is left adjoint to G, then F is right exact and G is left exact.
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Interlude: Algebras

Definition (Graded Algebra). A graded ring R is a ring that can be decomposed into a
direct sum

⊕∞
n=0Rn of additive groups such that RnRm ⊆ Rm+n.

An algebra A over a ring R is a graded algebra if it is graded as a ring.

Definition (Filtered Algebra). A filtered algebra A over a ring R is an algebra such that
there is an increasing sequence of subspaces {0} ⊆ F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ A which satisfy
Fm · Fn ⊆ Fm+n,

⋃
i∈N Fi = A.

Remark. A filtered algebra is a generalization of a graded algebra, since every graded algebra
is filtered by setting Fn =

⊕n
i=0Ri. Note that the filtration could be an infinite sequence on

either side.

Definition (Associated Graded Algebra). Let A be a filtered algebra. Then, define G(A) =⊕∞
n=0Gn, where G0 = F0, Gn = Fn/Fn−1.

When endowed with the naturally induced multiplication map, this turns into a graded alge-
bra, called the associated graded algebra of A.
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Lie algebras

Definition (Lie algebra). Let R be a commutative ring. A Lie algebra g is an R-module
equipped with a bilinear product, (x, y) 7→ [xy], which satisfies skew-symmetry and the Jacobi
identity.

Definition (Ideal). An ideal of a Lie algebra g is a submodule h ⊆ g such that [g, h] ⊆ h.

Remark. A Lie algebra homomorphism ϕ : g → g′ is a linear map such that ϕ([x, y]) =
[ϕ(x), ϕ(y)]).

Definition (g-modules). A (left) g-module M is an R-module with an R-bilinear product
g×M →M, (x,m) 7→ xm such that [x, y]m = x(ym)− y(xm).

Remark. A g−module homomorphism f : M → N is an R-module homomorphism which also
satisfies f(xm) = xf(m). We denote the set of all g−module homomorphisms by Homg(M,N).
This is an R−submodule of HomR(M,N).

Definition (Tensor algebra). Let M be an R-module. Then, the tensor algebra T(M) is
the following associative algebra:
T (M) = R⊕M ⊕ (M ⊗M)⊕ ...⊕M⊗n ⊕ ...

Remark. Here, M ⊗M is the tensor product.
Multiplication on T (M) goes as the following: (v0, v1, ...)×(w0, w1, ...) = (...,

∑n
k=0 vk⊗wn−k, ...).

(In case any of the indices are zero, this becomes the action of R on M). Bilinearity follows
from that of tensor multiplication (as well as that of the R×M operation).
Moreover, T (M) is a graded algebra: This is due to the fact that M⊗k ⊗M⊗l ⊆M⊗k+l.

Definition (Universal enveloping algebra). Let g be a Lie algebra over R. Then, the univer-
sal enveloping algebra U(g) is the quotient of T (g) by the ideal generated by the relation
i([x, y]) = i(x)i(y)− i(y)i(x), where i : g→ T (g) is the obvious inclusion.

Remark. Alternatively, Ug is the free algebra on generators i(x), x ∈ g, subject to the R-module
relations as well as the Lie algebra relation:

1. i(αx) = αi(x)

2. i(x+ y) = i(x) + i(y)

3. i([x, y]) = i(x)i(y)− i(y)i(x)

α ∈ R, x, y ∈ g.
Finally, note that Ug is a filtered algebra. The associated graded algebra G(Ug) is nothing but
the symmetric algebra (which we can think of as the polynomial ring on the basis of g).

Theorem 3.6. There is a natural isomorphism between the category of (left) g-modules and
(left) Ug-modules.
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Proof. We describe the correspondence between the two. Let M be a g-module, and consider a
monomial x1 · ... ·xn ∈ Ug. Then, the formula (x1 · ... ·xn)m = x1(x2(...(xnm))), when extended
linearly, will turn M into a Ug-module.
Conversely, let M be a Ug-module. Then, xm := i(x)m turns it into a g-module (via the relation
used to define Ug).

Theorem 3.7. Let U : g 7→ Ug be a functor from Lie algebras to associative algebras, and
Lie : A 7→ Lie(A) be a functor from associative algebras to Lie algebras (where we obtain
Lie(A) by defining [x, y] := xy − yx on A).
Then, U is the left adjoint of Lie.

Proof. We want to show that there is a natural isomorphism Hom(g,Lie(A)) ∼= Hom(Ug, A).
First, let φ : g → Lie(A) be a Lie algebra homomorphism. We can extend this linearly
to an algebra homomorphism φ : Ug → A in the obvious manner. This gives us a map
Hom(g,Lie(A))→ Hom(Ug, A), φ 7→ φ.
On the other hand, suppose we have an algebra homomorphism ψ : Ug → A. Then, we can
define ψ : g → Lie(A) as ψ ◦ i. This is obviously an algebra homomorphism; but it is, in fact,
also a Lie algebra homomorphism by virtue of the defining relation of Ug.
Naturality and φ = φ,ψ = ψ are now immediate from definition. (Note that the Lie functor
will basically do nothing to morphisms, and that U will linearly extend them.)

Theorem 3.8 (Poincare-Birkhoff-Witt). Let g be a free R-module with basis {eα}.
Then, Ug is also a free R-module with basis {eI}, where I is any increasing sequence of
indices from α.

Definition (Free Lie algebra). Let X be a set and i : X → L be a function from X into a
Lie algebra L. The Lie algebra L is called free on X if, for any Lie algebra A with a function
f : X → A, there is a unique Lie algebra homomorphism g : L→ A such that f = g ◦ i.

Discussion. A free Lie algebra generated by a set X is the Lie algebra generated by it
without any imposed relations other than the defining relations of alternating bilinearity
and the Jacobi identity. We shall elaborate a construction of it.
Let F (X) be the free associative algebra on X (canonically isomorphic to the tensor algebra
on RX, the free module generated by X with underlying ring R). Let U(F (X)) = L be the
underlying Lie algebra of the free associative algebra (that is, the one obtained by forgetting
all multiplication except the commutator).
Consider the subalgebra f of L that is generated by X (to be precise, by the first tensor
power RX of T (RX)—but this is canonically isomorphic to X). We claim that this is the
free Lie algebra on X.
Let f : X → A be a map onto a Lie algebra A, and let UA be its universal enveloping
algebra. We have seen that A ⊆ UA, and so may thereby recast f as a map from X → UA.
If we extend this, we get a homomorphism f̃ : F (X) → UA. This will restrict to a map
g : f→ A. g will be a Lie algebra homomorphism, because f̃ was a homomorphism to begin
with. Uniqueness is obvious. This establishes what we wanted.
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Lemma 3.9. Let f be the free Lie algebra on the set X. Then, U f is the free associative
algebra on X.

Proof. The proof is five steps, culminating in an application of Yoneda’s lemma. Let A be any
associative algebra on the underlying ring.

• HomAlg(U f, A) ∼= HomLie(f,Lie(A)): This follows from left adjointness of U with Lie.

• HomLie(f,Lie(A)) ∼= HomSet(X,U(A)): This follows from the left adjointness of the free
Lie algebra functor (on sets) with the forgetful functor.

• HomSet(X,U(A)) ∼= HomAb(G(X), A): This follows from left adjointness of the free
abelian group functor (on sets) with the forgetful functor. (Here, we view A as an abelian
group; so, without the multiplicative structure.)

• HomAb(G(X), A) ∼= HomAlg(T (G(X)), A): This follows from left adjointness of the tensor
algebra functor with the forgetful functor (i.e., forgetting the multiplicative structure).

So finally, we have HomAlg(U f, A) ∼= HomAlg(R{X}, A) for all algebras A. It then follows by
Yoneda’s lemma that U f ∼= R{X}.

Definition. Let us denote by F ′ the ideal M ⊕ (M ⊗M) ⊕ ... of F , where M = RX. We
denote by σ the linear map (xi1 · ... · xim) 7→ [...[xi1xi2 ]....xim ] from T ′ → f (for m = 1, it is
identity).

Theorem 3.10 (Dynkin-Specht-Wever). Let X be a set and a ∈ F be a homogeneous
element, where F is the free algebra on X. Then, a ∈ f ⇐⇒ σ(a) = ma, where m is the
degree of a.

Definition. We define two functors from Modg to ModR.

1. −g :M 7→Mg = {m ∈M : xm = 0∀x ∈ g}. This is called the invariant submodule.

2. −g :M 7→Mg =M/gM . This is called the coinvariant submodule.

Lemma 3.11. −g is left exact, and −g is right exact.

Proof. Consider the following functor from ModR to Modg: Given an R-module M , it turns it
into a (trivial) g−module by having xm = 0 for all x ∈ g,m ∈M .
We will show that −g is right adjoint to this trivial functor (henceforth denoted by T ), and that
−g is left adjoint to it. The result will then follow from theorem 1.4.

1. −g: We want to show that Hom(T (M), L) ∼= Hom(M,Lg).

• Let f : T (M)→ L be a g-module homomorphism (where we denote by L a g-module).
This existence assumption already implies something rather special about L.
For any x ∈ g, x · f(m) = f(xm) = f(0) (by definition of T (M)) = 0 = x · l =⇒ l ∈
Lg. Thus, L = Lg, and we may legitimately define f :M → Lg, f(m) := f(m).
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• Let g :M → Lg be an R-module homomorphism. There is an obvious way to extend
it to a g-module homomorphism g : T (M)→ L, which should suffice.

2. −g: We want to show that Hom(Lg,M) ∼= Hom(L, T (M)).

• Let f : Lg →M be an R-module homomorphism. Define f : L→ T (M), l 7→ f([l]).
We need to ensure that this is in accordance with the additional structure required to
be ag-module homomorphism. Firstly, note that xf(l) = 0 for all x ∈ g, by definition
of T (M). Now, f(xl) = f([xl]) = f([0]) (since xl ∈ gL) = 0. Therefore, this is a valid
map of morphisms.

• Let g : L → T (M) be a g-module homomorphism. The intuitive thing to do here is
to define g : Lg →M, [l] 7→ g(l). However, one needs to ensure this is well-defined.
Suppose [l] = [l′] =⇒ l − l′ ∈ gL =⇒ l − l′ = xl̃, x ∈ g, l̃ ∈ L. Then, g(l)− g(l′) =
g(l − l′) = g(xl̃) = xg(l̃) = 0 (since we’re now in T (M)), and thus, g([l]) = g([l′]),
and our map is well-defined.

In both cases, bijectivity and naturality can be quickly checked.
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Homology & Cohomology

Definition (Homology & cohomology groups of a Lie algebra). Let M be a g−module.

• L∗(−g)(M) shall be called the homology groups of g with coefficients in M.

• R∗(−g)(M) shall be called the cohomology groups of g with coefficients in M.

Remark. Strictly speaking, these are not groups but modules.

Example. Let g be the free R-module on the basis {e1, ..., en}, and given the zero Lie bracket.
We will compute its homology and cohomology groups over an arbitrary g−module M .
Firstly, note that M can equivalently be viewed as a module over the polynomial ring
R[e1, ..., en] = k.
Next, let us look at R as the trivial g−module.

• Mg = R ⊗k M : Using the fact that R ∼= k/ < e1, ..., en >≡ k/g and the property
R/I ⊗R M ∼=M/IM , we get the equality.

• Mg = Homg(R,M) : If given that R is unital, this is clear from adjointness
(Homg(R,M) ∼= HomR(R,M

g)).

From this, it follows that H∗(g,M) ∼= Tork∗(R,M);H∗(g,M) ∼= Ext∗k(R,M).

Remark. Note that Ug = R[e1, ..., en]. In fact, a generalization of the above example holds.

Theorem 4.12. Let M be a g-module. Then:

H∗(g,M) ∼= TorUg
∗ (R,M)

H∗(g,M) ∼= Ext∗Ug(R,M)

Example. Let f be any free Lie algebra on a set X. By either reasoning as in the above
example or using the fact that U f ∼= R{X} = k (the noncommutative polynomial ring
on X) in combination with theorem 3.9, we once again arrive at the results H∗(f,M) ∼=
Tork∗(R,M);H∗(f,M) ∼= Ext∗k(R,M).
Let us now actually compute the Tor and Ext groups.
For this, we first need a projective resolution of R as a k−module. We claim that this is
given by the following:

0→ J → R{X} → R→ 0

where J = XR{X}.
Exactness is clear; so is the fact that R{X} = k is projective. From the additional fact that
J is free with basis X, we are done, and thus have a projective resolution with us.
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Example (continued). Continuing the process, we want the homology of the following:

0→ J ⊗k M →M → 0

and the homology of the following:

0→M → Homf(J,M)→ 0

We thus finally have the following:

• Hn
f (f,M) = H f

n(f,M) = 0 for all n ≥ 2

• H0
f (f, R) = H f

0(f, R) = R

• H1
f (f, R) = Πx∈XR.

• H f
1(f, R) =

⊕
x∈X R

where the last three use the facts that, for M = R, the differential maps are all zero; and
that J is free with basis X.

Definition (Augmentation ideal). Let g be a Lie algebra over R. Consider the k-algebra
homomorphism ϵ : Ug→ k, i(g) 7→ 0. We define the augmentation ideal as J := ker(ϵ).

Lemma 4.13. J/J2 ∼= gab := g/[g, g].

Proof. We construct an isomorphism between the two.

1. It is clear that the inclusion i : g→ Ug maps [g, g] to J2 (by virtue of the defining relation
on Ug). Thus, we have an induced map i : gab → J/J2.

2. Consider the map j : Ug → gab, i(x) 7→ x. Clearly, anything in J2 will land in [g, g].
Therefore, restricting and quotienting will give us a map j : J/J2 → gab.

One can check that j ◦ i, i ◦ j are identity, which produces the desired conclusion.

Theorem 4.14. For any Lie algebra g, H1(g, R) ∼= gab.

Proof. We start with the following sequence of g-modules:

0→ J→ Ug→ R→ 0

The maps are the obvious ones (inclusion and projection). Exactness is more or less immediate.
If we apply Tor and use the fact that TorUg

∗ (Ug,M) = 0, we get the following exact sequence:

0→ H1(g,M)→ J⊗Ug M →M →Mg → 0

(Among other things, we have used theorem 3.9 for the second term in the sequence.)
Set M = R. Now, J ⊗Ug R = J ⊗Ug (Ug/J) ∼= J/J2 (by property of tensor product) ∼= gab (by
lemma 3.10).
Observing that R ∼= Rg and then playing around with the exactness of the sequence a bit, we
will ultimately get H1(g,M) ∼= gab.
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Corollary 4.14.1. For any trivial g−module M, H1(g,M) ∼= gab ⊗R M .

Proof. Since M =Mg, H1(g,M) ∼= J⊗Ug M ∼= (J⊗Ug R)⊗R M ∼= gab ⊗R M .

Remark. For n ≥ 2, Hn(g,M) ∼= TorUg
n (R,M) ∼= TorUg

n−1(J,M).

Definition (Derivations). Let M be a g−module. A derivation is an R-linear map D : g→
M such that D([x, y]) = x(Dy)− y(Dx).

Remark. Derivations are module homomorphisms. Their set Der(g,M) is an R-submodule of
HomR(g,M).
We can define maps Dm : x 7→ xm,m ∈ M,x ∈ g. These are also derivations (by module
structure on M), called the inner derivations and form a further submodule DerInn(g,M).

Lemma 4.15. Homg(J,M) ∼= Der(g,M)

Proof. Let ϕ : J → M . Define Dϕ : g → M,x 7→ ϕ(i(x)). It is easy to check that Dϕ is a
derivation. We now claim that ϕ 7→ Dϕ is a natural isomorphism.

Theorem 4.16. H1(g,M) ∼= Der(g,M)/DerInn(g,M).

Proof. Once again, we start with the following exact sequence of Lie algebra modules:

0→ J→ Ug→ R→ 0

Applying Ext, we get the following exact sequence:

0→ HomUg(R,M)→ HomUg(Ug,M)→ HomUg(J,M)→ Ext1Ug(R,M)→ Ext1Ug(Ug,M)→ ...

Now, we use the following facts:

• ExtUg
∗ (Ug,M) = 0

• HomUg(J,M) ∼= Homg(J,M)

• Ext1Ug(R,M) ∼= H1(g,M)

• Homg(J,M) ∼= Der(g,M)

• HomUg(Ug,M) ∼=M

• HomUg(R,M) ∼= Homg(R,M) ∼=Mg

to finally end up with this exact sequence:

0→Mg →M → Der(g,M)→ H1(g,M)→ 0

If we show that the kernel of the last map is DerInn(g,M), we are done. But by exactness, this
amounts to showing that the image of M → Homg(J,M) is DerInn(g,M).
Let m 7→ ϕ, ϕ : J → M . Now, ϕ can be extended to Ug by defining phi(1) = m′. In this case,
Dϕ(x) = ϕ(i(x)) = ϕ(x · 1) = x ·m = Dm(x), which establishes that Dϕ is an inner derivation
and thus completes the proof.
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Corollary 4.16.1. For any trivial g−module M, H1(g,M) ∼= Der(g,M) ∼= Homg(g,M) ∼=
HomR(g

ab,M).

Proof. It is clear that if M is trivial, it can have only trivial inner derivations, which establishes
the first equality.
Der(g,M) ∼= HomR(g

ab,M) : This is because D([x, y]) = 0, so that it vanishes on [g, g].
The second equality follows by imposing the trivial Lie algebra module structure on Der.

Remark. For n ≥ 2, Hn(g,M) ∼= Extn−1
Ug (J,M).

Definition (Lie algebra extension). An extension e of a Lie algebra g by M is a short exact
sequence of Lie algebras

0→M
i−→ e

s−→ g→ 0

where M is an abelian Lie algebra.

Remark. M is a g−module by defining gm := i−1([s−1(g), i(m)]).
Two things to note here are:

• [s−1(g), i(m)] is in the image of i because i(M) = Ker(s) is an ideal of e.

• This definition is independent of the choice of inverse. For suppose we have two ele-
ments g1, g2 ∈ s−1(g), and suppose further that we have m1,m2 such that i(m1) =
[g1, i(m)], i(m2) = [g2, i(m)]. Then, i(m2−m1) = [g2−g1, i(m)]. But note that s(g2−g1) =
0 =⇒ g2 − g1 ∈ Ker(s) = Im(M). Thus, i(m2 − m1) = [i(m̃), i(m)] = 0 (since M is
abelian) =⇒ m2 = m1.

Definition. We say two extensions 0 → M → ei → g → 0 are equivalent if there is an
isomorphism φ : e1 → e2 such that the following diagram commutes:

0 M e1 g 0

0 M e2 g 0

φ

Let M be a given g−module. Then, denote by Ext(g,M) the set of equivalence classes of
extensions which recover the given module structure on M.

Theorem 4.17 (Classification theorem). Let M be a g−module. Then, Ext(g,M) is in 1-1
correspondence with H2(g,M).
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The Chevalley-Eilenberg complex

Definition (Modules). Let g be a Lie algebra over R that is free as an R-module. Let Λpg
its pth exterior product. Then, we define Vp(g) := Ug⊗R Λpg.

Remark. Vp(g) is free as a Ug-module, with basis 1⊗B (where B is the basis of Λpg).

Definition (Differentials). Let d : Vp(g) → Vp−1(g) be defined by d(u ⊗ x1 ∧ x2... ∧ xp) =
θ1 + θ2, where (for u ∈ Ug, xi ∈ g)

θ1 =

p∑
i=1

(−1)i+1uxi ⊗ x1 ∧ ...x̂i ∧ ... ∧ xp

θ2 =
∑
i<j

(−1)i+ju⊗ [xi, xj ] ∧ x1 ∧ ... ∧ x̂i ∧ ... ∧ x̂j ... ∧ xp

Remark. We separately define d : V1(g)→ V0(g) as u⊗ x 7→ ux (using Λ0g = R,Λ1g = g).

Lemma 5.18. d2 = 0.

Proof. If we write d(θi) = θi1 + θi2, it will turn out that θ22 = 0,−θ11 is the i = 1 part of θ21
and −θ12 is the i > 1 part of θ21, so that the sum vanishes.

Definition (The Chevalley-Eilenberg complex). V∗(g), with the given differential, is a chain
complex of Ug−modules. This is called the Chevalley-Eilenberg complex.

Theorem 5.19. V∗(g)
ϵ−→ R is a projective resolution of the g−module R.

Corollary 5.19.1 (Chevalley-Eilenberg). If M is a right g−module, then H∗(g,M) are the
homology of the chain complex M ⊗R Λ∗g.
If M is a left g−module, then H∗(g,M) are the cohomology of the cochain complex
HomR(Λ

∗g,M).

Proof. We have seen that V∗(g)
ϵ−→ R is a projective resolution of the g−module R. Therefore,

Hn(M ⊗Ug V∗(g)) ∼= TorUg
n (R,M) ∼= Hn(g,M) (theorem 3.10). But also, M ⊗Ug Vn(g) =

M ⊗Ug Ug⊗R Λ∗g =M ⊗R Λ∗g.
Similarly, Hn(Homg(V∗(g),M)) ∼= ExtUg

n (R,M) ∼= Hn(g,M). And also, Homg(V∗(g),M) =
Homg(Ug ⊗R Λ∗g,M) ∼= HomR(Λ

∗g,Homg(Ug,M)) ∼= HomR(Λ
∗g,M) (where we have used

tensor-hom adjunction at the end).

Remark. In the cochain complex, an element f of HomR(Λ
∗g,M) is an alternating R-multilinear

map of n variables in g taking values in M .
Its coboundary δf is the (n+1) cochain δf(x1, ..., xn+1) =

∑n+1
i=1 (−1)i+1xif(x1, ..., x̂i, ...xn+1)+∑

i<j(−1)i+jf([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn+1).
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Postscript

Z-Graded Lie superalgebras

In order to remain consistent with the rational homotopy theory literature, we shall henceforth
just say ‘graded Lie algebra’ for what follows.

Definition. A graded Lie algebra L is a graded vector space {Li}i∈Z equipped with a
linear map of degree zero L× L→ L, (x, y) 7→ [x, y] such that

1. [x, y] = −(−1)ij [y, x] (Antisymmetry)

2. (−1)ik[x, [y, z]] + (−1)jk[z, [x, y]] + (−1)ij [y, [z, x]] = 0 (Jacobi identity)

where i,j,k are the degrees of x,y,z respectively.
A morphism of graded Lie algebras is a map ϕ : L → M such that ϕ(Li) ⊆ Mi and

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L.

Definition. Let L be a graded Lie algebra. A (left) L-module is a graded vector space V
equipped with a map ψ : L×V → V, (l, v)→ l ·v such that [x, y]·v = y ·(x·v)−(−1)ijx·(y ·v).

Remark. Like in the case of ordinary Lie algebras, a module can also be described with a graded
Lie algebra morphism between L and Hom(V, V ), where L is a graded Lie algebra and V is a
graded vector space (so that its Homset, when equipped with the bracket [x, y] 7→ xy−(−1)ijyx,
is a graded Lie algebra—recall that its gradation will come from the degree of the linear map).

Hopf algebras

Definition (Coalgebra). A coalgebra over a field K is a vector space C over K together
with maps ∆ : C → C ⊗ C and ϵ : C → K such that the following diagrams commute:

1.
C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ Id⊗∆

∆⊗Id

2.
C C ⊗ C

C ⊗ C K ⊗ C ∼= C ∼= C ⊗K

∆

∆
Id

Id⊗ϵ

ϵ⊗Id

Remark. The first diagram is the dual of the one expressing associativity of algebra multiplication
(called the coassociativity of the comultiplication); the second diagram is the dual of the one
expressing the existence of a multiplicative identity. The map ∆ is called the comultiplication
(or coproduct) of C and ϵ is the counit of C.
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Definition (Bialgebra). A bialgebra is a vector space C over a field K equipped with both a
unital associative algebra structure, as well as with a counital coassociative algebra sructure,
satisfying the following compatibility conditions (where ∇ is the multiplication and η is the
unit):

1.
B ⊗B B B ⊗B

B ⊗B ⊗B ⊗B B ⊗B ⊗B ⊗B

∇

∆⊗∆

∆

id⊗τ⊗id

∇⊗∇

where τ : x⊗ y 7→ y ⊗ x

2.
B ⊗B B

K ⊗K ∼= K

∇

ϵ⊗ϵ
ϵ

3.
K ⊗K ∼= K

B ⊗B B

η⊗η
η

∆

4.

K

B

K

η

Id

ϵ

Definition (Hopf algebra). A Hopf algebra H is a bialgebra equipped with a K-linear map
S : H → H (called the antipode) such that the following diagram commutes:

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

S⊗Id

∇
ϵ

∆

∆

η

Id⊗S

∇

Remark. A group-like element is an x ∈ H such that ∆(x) = x⊗ x. A primitive element
is an x ∈ H such that ∆(x) = 1⊗ x+ x⊗ 1.

Example. The universal enveloping algebra U(g) of a Lie algebra g is an example of a Hopf
algebra, with ∆ : x 7→ x ⊗ 1 + 1 ⊗ x for x ∈ g (and being extended linearly elsewhere),
ϵ : x 7→ 0, and S : x 7→ −x.
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Discussion. Let H denote the category of Hopf algebras, and L the category of Lie algebras.
We have a functor U : L→ H, sending a Lie algebra to its universal enveloping algebra, and
a functor P : H→ L, sending a Hopf algebra to the Lie algebra of its primitive elements.
The Milnor-Moore theorem states that U ◦ P = Id; and a theorem attributed to Friedrichs
states that P ◦ U = Id.
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