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Smooth Manifolds

Definition (Manifold). A topological manifold M is a second countable Hausdorff space
which is locally Euclidean, that is, given a point p ∈ M , there exists a neighbourhood
p ∈ U such that U is homeomorphic to some open subset of Rn.

Definition (Atlas). An atlas is a collection of ordered pairs (U, ϕ) called coordinate charts
such that U ⊆M and ϕ : U → Ũ ⊆ Rn is a homeomorphism.

Definition. Two coordinate charts (U, ϕ), (V, ψ) are said to be smoothly compatible if
either U ∩ V = ∅ or ϕ ◦ ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ) is a diffeomorphism.

Definition. A smooth atlas for a manifold is an atlas such that all the charts are smoothly
compatible with one another.

Lemma 1.1. Given a smooth atlas A, there is a unique maximal smooth atlas Ã containing
A. We call this the smooth structure on M .

Remark. For n ̸= 4,Rn has a unique smooth structure (up to diffeomorphism). However, R4

has uncountably many distinct smooth structures.

Definition (Smoothness). A function f : M → N is called smooth at p if there exist
coordinate charts (U, ϕ) ⊆ M, (V, ψ) ⊆ N such that f(U) ⊆ V , and ψ ◦ f ◦ ϕ−1 : Rm → Rn
is smooth at ϕ(p).

Tangent Spaces

Definition (Derivation). Given a smooth manifold M of dimension n, a derivation at a
point p ∈M is a linear map X : C∞(M) → R such that X(fg) = X(f)g(p) + f(p)X(g).

Definition (Tangent Space). The tangent space of a manifold at a point p, TpM , is the
vector space (over R) of all derivations at p.
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Definition (Pushforward). Given a smooth map F : M → N , the differential of F at p,
denoted by dFp or F∗,p : TpM → TF (p)N , is defined by dFp(X)(f) = X(f ◦ F ).

Theorem 2.1. { ∂
∂ei

|a} form a basis for TaRn.

Lemma 2.2. Let ∂
∂xi|p := d(ϕ−1)ϕ(p)(

∂
∂ei

|ϕ(p)), where ϕ : U → Ũ ⊆ Rn is a homeomorphism

(making dϕp : TpU ∼= TpM → Tϕ(p)U ∼= Tϕ(p)Rn an isomorphism). Then, { ∂
∂xi

|p} forms a
basis for TpM .

Lemma 2.3. For a smooth map F : M → N , the matrix representation of dFp is given by
aij =

∂F i

∂xj
|p := ∂(ψ◦F◦ϕ−1)i

∂ej
|ϕ(p).

Definition. Given a curve γ : I →M such that γ(0) = p, define γ1 ∼ γ2 ⇐⇒ (f◦γ1)′(0) =
(f ◦ γ2)′(0) for all f ∈ C∞(M).

Lemma 2.4. Given γ : I →M , define γ′(0) = dγ0(
d
dt |0) ∈ Tγ(0)M . Then, given X ∈ TpM ,

there exists a smooth curve such that γ′(0) = X.

Theorem 2.5. Let VpM be the vector space constituted by the equivalence classes of curves
[γ]. Then, VpM ∼= TpM through the mapping [γ] 7→ γ′(0).

Remark. The above theorem offers a more geometric perspective on the tangent space. It is
constituted by the set of ‘curves’ (initialized at the same point) on M pointing in all possible
directions (wherein two curves are said to point in the same ‘direction’ if any function has the
same derivative along them).

Definition (Tangent bundle). TM = ⊔pTpM is known as the tangent bundle of a mani-
fold M.

Theorem 2.6. TM is a smooth manifold of dimension 2n.

Remark. n from the manifold M , and n more from TpM .
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Vector Fields

Definition (Vector field). A vector field on a smooth manifold is a map X : M → TM
such that π ◦X = idM . If X is a smooth map, we call it a smooth vector field.

Remark. X assigns a vector to each point on the manifold. The set of all smooth vector fields on
a manifold, denoted by χ(M), forms a vector space over R. The following theorem characterizes
smooth vector fields.

Theorem 3.1. The following statements are equivalent:

1. X is a smooth vector field

2. Xf ∈ C∞(M)∀f ∈ C∞(M), where (Xf)(p) := (Xp)f

3. {fi} are smooth, where X =
∑
fi

∂
∂xi

.

Remark. The expression in (3) is obtained by setting fi = Xi, where Xp =
∑
Xi(p) ∂

∂xi
|p for a

vector field X. The expression will be local, since the basis refers to a coordinate neighbourhood
of p.
The next theorem offers an identification of elements of the vector space χ(M) with elements of
the ring C∞(M). Note that, as such, the former forms a module over the latter.

Theorem 3.2. Let X be any smooth vector field and y : C∞(M) → C∞(M) be any deriva-
tion. Then, the following hold:

1. X ∈ C∞(M)

2. There exists a Y ∈ χ(M) such that Y f = yf for all f ∈ C∞(M)

Definition (F-related). Let F : M → N be a smooth map. Then, X ∈ χ(M) is said to be
F-related to Y ∈ χ(N) if dFp(Xp) = YF (p) for all p ∈M .

Remark. The next lemma offers an equivalent characterization of F-relatedness.

Lemma 3.3. Let F : M → N be smooth. Then, X ∈ χ(M), Y ∈ χ(N) are F-related
⇐⇒ ∀f ∈ C∞(N), X(f ◦ F ) = (Y f) ◦ F .

Remark. The next theorem essentially tells us when the pushforward of a vector field F∗X
(defined as F∗(X)(p) = dFp(Xp)) is smooth. The condition is slightly stronger than just having
F be smooth.

Theorem 3.4. If F :M → N is a diffeomorphism, for every X ∈ χ(M), there is a unique
Y ∈ χ(N) that is F-related to X.
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Submersions, Immersions, Submanifolds

Definition (Rank). The rank of F : M → N at p ∈ M is the rank of the linear map
dFp : TpM → TF (p)N .

Definition (Submersion/Immersion). A smooth map F :M → N is said to be a submersion
(immersion resp.) if it has constant rank n(m resp.).

Definition (Smooth embedding). A smooth embedding is an immersion homeomorphic on
its image.

Theorem 4.1 (Rank theorem). Let F :M → N be of constant rank k. Given p ∈M , there
exists coordinate neighbourhoods around p, F (p) with F (U) ⊆ V such that F̂ (p)(u1, ...um) =
(u1, ...uk, 0, ...0).

Definition (Submanifold). Let M be a smooth n-manifold and S ⊆M be a subset with the
subspace topology. Furthermore, suppose S is covered by charts (U, ϕ) such that ϕ(S ∩ U)
is a k-slice in Rn. Then, S is a topological manifold with dimension k, and we call it an
embedded submanifold.

Lemma 4.2. i : S →M is a smooth embedding.

Lemma 4.3. If F : M → N is a smooth embedding, F (M) is an embedded submanifold of
N .

Definition. Let ϕ :M → N be a map.

1. For any c ∈ N , the set ϕ−1(c) ⊆M is called a level set of ϕ.

2. If p ∈M is such that dϕp is surjective, we call p a regular point of ϕ.

3. If c ∈ N is such that every p ∈ ϕ−1(c) is a regular point, we call c a regular value of
ϕ.

If something is not a regular point (value resp.), we call it a critical point (value resp.).

Theorem 4.4 (Constant rank level set theorem). Let Φ : M → N be a smooth map of
constant rank k. Then, each level set of Φ is an embedded submanifold of M with codimension
k..
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Lemma 4.5. Let ϕ : M → N be a smooth map of constant rank and S be any level set of
ϕ. Then, TpS = ker(dϕp) for all p ∈ S.

Differential Forms

Definition (Cotangent space). A cotangent vector is an element of the cotangent space
(TpM)∗ = T ∗

pM . The cotangent bundle is the collection T ∗M = ⊔pT ∗
pM .

Definition (Differential 1-form). A differential one-form is a map ω from M → T ∗M
such that π ◦ ω = IdM ; p 7→ ωp ∈ T ∗

pM .

Definition (Differential of a map). For f ∈ C∞(M), the differential of f at p ∈M is the
cotangent vector dfp : TpM → R defined by dfp(Xp) := Xpf .

Remark. We have already used the phrase ‘differential of a map’ in section 2 to refer to something
slightly different. If we use the fact that TaR ∼= R, it can be seen that they actually amount to
the same thing.
The cotangent bundle will be a manifold of dimension 2n with constructions largely identical to
that of the tangent bundle.

Lemma 5.1. The dual basis of { ∂
∂xi

|p} is given by {dxip}.

Remark. Much like the case of vector fields, we can, in some coordinate neighbourhood U , write
a one-form as ω =

∑
i aidxi.

The next theorem characterizes smooth one-forms. Observe how the third statement allows us
to recast one-forms as maps from χ(M) to C∞(M).

Theorem 5.2. The following statements are equivalent:

1. ω is a smooth one-form

2. {ai} are all smooth

3. ωX ∈ C∞(M) for all X ∈ χ(M), where ωX(p) := ωp(Xp).

Definition (Tensors). A k-tensor is a multilinear map T : V × ..× V︸ ︷︷ ︸
k times

→ R.

An alternating k-tensor is a k-tensor such that T (vσ(1), ...vσ(k)) = sgn(σ)T (v1, ...vk), where
σ ∈ Sk.
The set of all alternating k-tensors on a vector space V forms a vector space Λk(V ).
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Lemma 5.3. If V has dimension n, Λk(V ) has dimension nCk.

Definition (Exterior bundle). We call Λk(M) = ⊔p∈MΛk(TpM) the exterior bundle on
M.

Remark. The exterior bundle of a manifold is itself a smooth manifold of dimension n+nCk (n
from the manifold M , and nCk more from Λk(TpM)).

Definition (Differential k-form). A differential k-form is a map s : M → Λk(M) such
that π ◦ s = IdM .

Remark. Observe how Λ1(M) = T ∗M , making this consistent with our earlier understanding of
one-forms.
We denote the space of smooth k−forms on M by Ωk(M), and Ω∗(M) = ⊔kΩk(M).

Definition (Pullback). Let F : M → N be a smooth map. Then, F ∗,p : Λk(TF (p)N) →
Λk(TpM), is defined by (F ∗,ps)(v1, ..., vk) = s(F∗,pv1, ...F∗,pvk)
(where s ∈ Λk(TF (p)N), vi ∈ TpM).

The pullback of F, F ∗ : Ω∗(N) → Ω∗(M), is defined by (F ∗ω)p = F ∗,pωF (p).

Definition (Wedge product). Let ω ∈ Ωk(M), η ∈ Ωl(M). Then, (ω ∧ η)p = ωp ∧ ηp, where
the right-hand side is the antisymmetrization of ωp · ηp.

Remark. One could imagine the pullback as in contrast with the pushforward, which is as
F∗ : χ(M) → χ(N), (F∗X)p = F∗,pXp.
The wedge product and pullback of smooth forms is smooth.
(Ω∗(M),∧) forms a graded algebra, and on it, F ∗ is a graded algebra homomorphism.
By convention, we have F ∗h = h ◦ F for a C∞ function h.

Lemma 5.4. If {v1, ..., vn} is a basis for V and {e1, ..., en} is the dual basis, then {ei1 ∧ ...∧
eik}1≤i1...≤ik≤n is a basis for Λk(V ), and (ei1 ∧ ... ∧ eik)(v1, ..., vk) = det[eil(vj)]l,j.

Remark. The formula will follow from the definition of the wedge product and the Leibniz formula
for determinants. With it, we can write df1 ∧ ... ∧ dfk =

∑
1≤i1≤...ik≤n ai1,...,ikdxi1 ∧ ... ∧ dxik ,

where ai1,...,ik ∈ C∞(M).
From the same argument, one can write, for fi ∈ C∞(M), (df1 ∧ ... ∧ dfk)(

∂
∂xµ1

, ..., ∂
∂xµk

) =

det[ ∂fi∂xµj
]ki,j=1.

In the particular case of top forms, we have the following change-of-coordinates formula:
dx1 ∧ ... ∧ dxn = hdy1 ∧ ... ∧ dyn, h = det[∂xi∂yj

]ki,j=1.

Definition (Anti-derivation). An anti-derivation (of degree 1) D : Ω∗(M) → Ω∗(M) is
an R-linear map such that:

1. D(ω ∧ η) = (Dω) ∧ η + (−1)kω ∧ (Dη), ω ∈ Ωk(M), η ∈ Ωl(M)

2. D(Ωk(M)) ⊆ Ωk+1(M).
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Definition (Exterior derivative). An exterior derivative on M is an antiderivation D on
Ω∗(M) such that:

1. D ◦D = 0

2. (Df)(X) = Xf

Theorem 5.5. Given a smooth manifold M, a unique exterior derivative d exists.

Remark. We can write out the action of d explicitly.
For ω ∈ Ωk(M), dw = d(

∑
1≤i1≤...ik≤n ai1,...,ikdxi1 ∧ ... ∧ dxik)

=
∑

1≤i1≤...ik≤n,1≤j≤n
∂ai1,...,ik
∂xj

dxj ∧ dxi1 ∧ ... ∧ dxik .

Lemma 5.6. F ∗ commutes with d.

Orientation

Definition (Orientation on a vector space). Let V be an n-dimensional vector space. β ∈
Λn(V ) induces the orientation [v1, ..., vn] if β(v1, .., vn) > 0, where
(v1, ..., vn) ∼ (u1, ..., un) ⇐⇒ the two basis sets are related by a matrix of positive determi-
nant.

Remark. Alternatively, we can define an equivalence class on Λn(V ) (which, recall, is one-
dimensional) by deeming β ∼ η ⇐⇒ β = cη, c > 0. This allows us to define orientation as an
equivalence class of covectors.

Definition (Orientation on a manifold). A pointwise/rough orientation on M is a collection
of orientations [µp] on TpM .

Definition (Frame). A frame for an n-dimensional manifold is a collection of vector fields
X1, ..., Xn such that for all p ∈M, {X1,p, ..., Xn,p} forms a basis for TpM .

Definition (Smooth orientation). A pointwise orientation µ is said to be smooth at p if
there exists a frame X1, ...Xn smooth at p such that [X1,p, ..., Xn,p] ∼ µp.

Definition (Orientable). A manifold M is orientable if it admits a smooth orientation.

Lemma 6.1. A connected orientable manifold has exactly two orientations.
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Theorem 6.2. Let M be a smooth n-dimensional manifold. Then, the following statements
are equivalent:

1. M is orientable

2. M admits a nowhere vanishing smooth n-form

3. The transition maps on M all have positive Jacobian

Remark. An orientation can be defined on an orientable manifold by making a choice of nowhere-
vanishing top form; top forms can be partitioned into two elements through the equivalence
relation ω ∼ ω′ ⇐⇒ ω = fω′ for some f ∈ C∞(M) such that f > 0.

Definition (Orientation-preserving maps). Let (M, [ωM ]), (N, [ωN ]) be two oriented smooth
manifolds, and F : M → N be a smooth map. We say F is orientation-preserving if
[F ∗ωN ] = [ωM ].

Remark. It can be shown that the third statement in the above theorem amounts to saying
precisely that all the transition maps of the manifold are orientation-preserving.

Definition (Contraction). The map iv : Λk(V ) → Λk−1(V ), ω 7→ ivω, called interior multi-
plication or contraction with v, is defined as ivω(v1, ..., vk−1) = ω(v, v1, ..., vk−1).

Integration

Definition (Domain of integration). A domain of integration D ⊆ Rn is a bounded set
such that ∂D has (n-dimensional) Lebesgue measure zero.

Definition. Let ω be a top form on Rn, and D be a domain of integration. Then,
∫
D ω :=∫

D fdV , where ω = fdx1 ∧ ... ∧ dxn for some smooth function f : Rn → R.

Lemma 7.1. Let D, E be open domains of integration in Rn and G : D → E be a diffeo-
morphism. Then, given a top form ω on E,

∫
DG

∗ω = ±
∫
E ω (depending on whether G is

orientation-preserving or reversing.)

Discussion. This fact will prove useful in the following discussion: For any compact subset
of an open set K ⊆ U , there exists a domain of integration such that K ⊆ D ⊆ D ⊆ U .
Now, let ω be a compactly supported top-form of Rn whose support is contained in some
open set U . Then,

∫
U ω =

∫
D ω (where D is the domain of integration via the above result).

If we restrict ourselves to compactly supported n-forms, lemma 7.1 holds for any open
subsets D,E.
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Definition. Let M be a smooth oriented manifold and ω a compactly supported top form
within a (positively oriented) chart (U,φ). Then,

∫
M ω :=

∫
φ(U)(φ

−1)∗ω.

Lemma 7.2.
∫
M ω, as defined above, is independent of choice of chart.

Definition (Integration on manifolds). Let M be a smooth oriented manifold and ω a com-
pactly supported top form. Let (Ui, φi) cover supp(ω), and ψi be a subordinate partition of
unity. Then, we define ∫

M
ω =

∑
i

∫
M
ψi ◦ ω

Remark. It can be shown that the above definition is independent of the choice of partition of
unity.

Postscript

Lie groups & Lie algebras

Definition (Lie bracket of vector fields). Let X,Y ∈ χ(M). Then, [X,Y ] : C∞(M) →
C∞(M) is defined as X(Y f)− Y (Xf).

Definition. A Lie group G is a smooth manifold with group structure such that the map
G×G→ G, (g1, g2) 7→ g1g

−1
2 is smooth.

Lemma 8.1. The space χ(M) equipped with the bracket [, ] forms a Lie algebra.

Lemma 8.2. Let F : M → N be a diffeomorphism. If X̃, Ỹ are F-related to X,Y , then
[X̃, Ỹ ] is F-related to [X,Y ].

Definition. Let G be a Lie group. Then, denote by Lg the diffeomorphism g′ 7→ gg′.

Definition. X ∈ χ(G) is said to be left-invariant if it is Lg-related to itself for all g ∈ G;
that is, (dLg)g′(Xg) = Xgg′ .

Theorem 8.3. Let Lie(G) be the space of all left-invariant vector fields on G. Then, Lie(G)
is a Lie algebra, and Lie(G) ∼= Te(G).
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Boundary

We denote by Hn the closed upper-half plane, that is, {(x1, ..., xn) ∈ Rn : xn ≥ 0}.

Discussion. An n-dimensional topological manifold with boundary is a
second-countable Hausdorff space M in which every point has a neighborhood homeomor-
phic either to an open subset of Rn or to a (relatively) open subset of Hn.
An open subset U ⊆ M together with a map φ : U → Rn that is a homeomorphism onto
an open subset of Rn or Hn will be called a chart for M .
We will call (U,φ) an interior chart if φ(U) is an open subset of Rn, and a boundary
chart if φ(U) is an open subset of Hn such that φ(U) ∩ ∂Hn ̸= ∅.
A point p ∈M is called an interior point if it is in the domain of some interior chart; and
a boundary point if it is in the domain of a boundary chart that sends p to ∂Hn.
The boundary of M (the set of all its boundary points) is denoted by ∂M . It is an (n− 1)
dimension submanifold without boundary of M .

It is clear that any p ∈ M is either an interior point or a boundary point. However, it
can also be proven that no point can be both in the interior and in the boundary.

We end by stating a landmark result in differential geometry.

Theorem 8.4 (Stokes’ theorem). Let M be a smooth, oriented n-dimension manifold with
boundary, and ω be a compactly supported smooth (n-1) form. Then:∫

M
dw =

∫
∂M

ω
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