Differential Geometry
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Smooth Manifolds

Definition (Manifold). A topological manifold M is a second countable Hausdorff space
which is locally FEuclidean, that is, given a point p € M, there exists a neighbourhood
p € U such that U is homeomorphic to some open subset of R™.

Definition (Atlas). An atlas is a collection of ordered pairs (U, ¢) called coordinate charts
such that U C M and ¢ : U — U C R” is a homeomorphism.

Definition. Two coordinate charts (U, @), (V,v) are said to be smoothly compatible if
either UNV =0 or pop™ L : p(UNV) = ¢(UNV) is a diffeomorphism.

Definition. A smooth atlas for a manifold is an atlas such that all the charts are smoothly
compatible with one another.

Lemma 1.1. Given a smooth atlas A, there is a unique mazximal smooth atlas A containing
A. We call this the smooth structure on M.

Remark. For n # 4,R™ has a unique smooth structure (up to diffeomorphism). However, R*
has uncountably many distinct smooth structures.

Definition (Smoothness). A function f : M — N is called smooth at p if there exist

coordinate charts (U, ¢) C M, (V,1)) C N such that f(U) CV, andpo fop™!:R™ — R"
is smooth at ¢(p).

Tangent Spaces

Definition (Derivation). Given a smooth manifold M of dimension n, a derivation at a
point p € M is a linear map X : C*°(M) — R such that X(fg) = X(f)g(p) + f(p)X(9).

Definition (Tangent Space). The tangent space of a manifold at a point p, T,M, is the
vector space (over R) of all derivations at p.



Definition (Pushforward). Given a smooth map F : M — N, the differential of F at p,
denoted by dFy or Fip: TyM — Tp,) N, is defined by dF,(X)(f) = X(f o F).

Theorem 2.1. {%Ll} form a basis for T,R™.

Lemma 2.2. Let -9 := d(cb*l)d,(p)(%mp)), where ¢ : U — U C R™ is a homeomorphism

Ox'lp *
(making dey, : TyU = TpyM — Typ)U = Ty, R™ an isomorphism). Then, {%b} forms a
basis for T,M .

Lemma 2.3. For a smooth map F': M — N, the matriz representation of dF, is given by
L BFi| o 3(¢OF0¢71)i‘
Aij = ggi lp *= el o(p)-

Definition. Given a curve~y : I — M such that y(0) = p, define y1 ~vy2 <= (fon) (0) =
(F 012)/(0) for all f € C(M).

Lemma 2.4. Giwven vy : 1 — M, define v/ (0) = d’yo(%lo) € Tyo)M. Then, given X € T,M,
there exists a smooth curve such that v'(0) = X.

Theorem 2.5. Let V,,M be the vector space constituted by the equivalence classes of curves
[v]. Then, V,M = T,M through the mapping [y] — +'(0).

Remark. The above theorem offers a more geometric perspective on the tangent space. It is
constituted by the set of ‘curves’ (initialized at the same point) on M pointing in all possible
directions (wherein two curves are said to point in the same ‘direction’ if any function has the
same derivative along them).

Definition (Tangent bundle). TM = U,T,M is known as the tangent bundle of a mani-
fold M.

Theorem 2.6. TM is a smooth manifold of dimension 2n.

Remark. n from the manifold M, and n more from 7, M.



Vector Fields

Definition (Vector field). A wvector field on a smooth manifold is a map X : M — TM
such that mo X =idys. If X is a smooth map, we call it a smooth vector field.

Remark. X assigns a vector to each point on the manifold. The set of all smooth vector fields on
a manifold, denoted by x (M), forms a vector space over R. The following theorem characterizes
smooth vector fields.

Theorem 3.1. The following statements are equivalent:
1. X is a smooth vector field
2. Xf e CO(M)Vf e C®(M), where (X f)(p) := (Xp)f

3. {fi} are smooth, where X = fi%.

Remark. The expression in (3) is obtained by setting f; = X*, where X, = > X(p) aii |p for a

vector field X. The expression will be local, since the basis refers to a coordinate neighbourhood
of p.

The next theorem offers an identification of elements of the vector space x (M) with elements of
the ring C*°(M). Note that, as such, the former forms a module over the latter.

Theorem 3.2. Let X be any smooth vector field and y : C*°(M) — C*°(M) be any deriva-
tion. Then, the following hold:

1. X e C®(M)
2. There exists a Y € x(M) such that Y f = yf for all f € C®°(M)

Definition (F-related). Let F' : M — N be a smooth map. Then, X € x(M) is said to be
F-related to Y € x(N) if dFy(Xp) = Yp(p) for allp € M.

Remark. The next lemma offers an equivalent characterization of F-relatedness.

Lemma 3.3. Let F' : M — N be smooth. Then, X € x(M),Y € x(N) are F-related
< VfeC®(N),X(foF)=(Yf)oF.

Remark. The next theorem essentially tells us when the pushforward of a vector field F, X
(defined as Fy(X)(p) = dFp,(Xp)) is smooth. The condition is slightly stronger than just having
F be smooth.

Theorem 3.4. If F : M — N is a diffeomorphism, for every X € x(M), there is a unique
Y € x(N) that is F-related to X.



Submersions, Immersions, Submanifolds

Definition (Rank). The rank of F : M — N at p € M is the rank of the linear map
de 3 TpM — Tp(p)N.

Definition (Submersion/Immersion). A smooth map F : M — N is said to be a submersion
(immersion resp.) if it has constant rank n(m resp.).

Definition (Smooth embedding). A smooth embedding is an immersion homeomorphic on
its 1mage.

Theorem 4.1 (Rank theorem). Let F': M — N be of constant rank k. Given p € M, there
exists coordinate neighbourhoods around p, F'(p) with F(U) C V' such that F(p)(ui,...um) =
(ul, UK, 07 0)

Definition (Submanifold). Let M be a smooth n-manifold and S C M be a subset with the
subspace topology. Furthermore, suppose S is covered by charts (U, ¢) such that (S NU)
is a k-slice in R™. Then, S is a topological manifold with dimension k, and we call it an
embedded submanifold.

Lemma 4.2. i: S — M is a smooth embedding.

Lemma 4.3. If F : M — N is a smooth embedding, F(M) is an embedded submanifold of
N.

Definition. Let ¢ : M — N be a map.
1. For any c € N, the set ¢~ (c) C M is called a level set of ¢.
2. If p e M is such that de, is surjective, we call p a regular point of ¢.

3. If c € N is such that every p € ¢ 1(c) is a regular point, we call ¢ a regular value of

o.

If something is not a regular point (value resp.), we call it a critical point (value resp.).

Theorem 4.4 (Constant rank level set theorem). Let ® : M — N be a smooth map of
constant rank k. Then, each level set of ® is an embedded submanifold of M with codimension

k..



Lemma 4.5. Let ¢ : M — N be a smooth map of constant rank and S be any level set of
¢. Then, T,S = ker(dg,) for allp € S.

Differential Forms

Definition (Cotangent space). A cotangent vector is an element of the cotangent space
(I,M)* =Ty M. The cotangent bundle is the collection T*M = L,TyM.

Definition (Differential 1-form). A differential one-form is a map w from M — T*M
such that mow = Idp;p— wp € TyM.

Definition (Differential of a map). For f € C*°(M), the differential of f at p € M is the
cotangent vector dfy, : T,M — R defined by dfy(X,) := Xpf.

Remark. We have already used the phrase ‘differential of a map’ in section 2 to refer to something
slightly different. If we use the fact that T,R = R, it can be seen that they actually amount to
the same thing.

The cotangent bundle will be a manifold of dimension 2n with constructions largely identical to
that of the tangent bundle.

Lemma 5.1. The dual basis of {B%JP} is given by {dxz;}.

Remark. Much like the case of vector fields, we can, in some coordinate neighbourhood U, write
a one-form as w = ), a;dx;.

The next theorem characterizes smooth one-forms. Observe how the third statement allows us
to recast one-forms as maps from x(M) to C*(M).

Theorem 5.2. The following statements are equivalent:
1. w is a smooth one-form

2. {a;} are all smooth

3. wX € C®°(M) for all X € x(M), where wX (p) := wp(Xp).

Definition (Tensors). A k-tensor is a multilinear map T : V x .. x V. — R.
———

k times
An alternating k-tensor is a k-tensor such that T (Vg(1), ---Vo(k)) = sgn(o)T(v1, ...vx), where
o € Sg.
The set of all alternating k-tensors on a vector space V forms a vector space A*(V).



Lemma 5.3. If V has dimension n, A¥(V)) has dimension nCj.

Definition (Exterior bundle). We call A¥(M) = UpersA¥(T,M) the exterior bundle on
M.

Remark. The exterior bundle of a manifold is itself a smooth manifold of dimension n+ nCy (n
from the manifold M, and nCy more from A*(T,M)).

Definition (Differential k-form). A differential k-form is a map s : M — AF(M) such
that mos = Idyy.

Remark. Observe how A'(M) = T*M, making this consistent with our earlier understanding of

one-forms.
We denote the space of smooth k—forms on M by QF(M), and Q*(M) = Uy QF(M).

Definition (Pullback). Let F' : M — N be a smooth map. Then, F*P : Ak(TF(p)N) —
A¥(T, M), is defined by (F*Ps)(v1, ..., v) = 8(Fypv1, ... Fi pvg)
(where s € A*(Tp(N),v; € T,M).

The pullback of F,F* : Q*(N) — Q*(M), is defined by (F*w)p, = F*Pwp ).

Definition (Wedge product). Let w € QF(M),n € QY(M). Then, (wAn), = wp A1y, where
the right-hand side is the antisymmetrization of wy - 1p.

Remark. One could imagine the pullback as in contrast with the pushforward, which is as
Fy:x(M) = x(N), (FX)p = Fip X

The wedge product and pullback of smooth forms is smooth.

(Q*(M), A) forms a graded algebra, and on it, F* is a graded algebra homomorphism.

By convention, we have F*h = h o F' for a C'**° function h.

Lemma 5.4. If {vi,...,vn} is a basis for V and {eq, ..., ey} is the dual basis, then {e;; A ...\
eik}lﬁil---ﬁikﬁn s a basis for Ak(V), and (6,‘1 VAN eik)(vl, ...,’Uk) = det[eil (vj)]ld'

Remark. The formula will follow from the definition of the wedge product and the Leibniz formula
for determinants. With it, we can write df] A ... Adfy, = Zlgilg...ikgn @iy i Ay A AN dx,
where a;, .., € C®(M).

From the same argument, one can write, for f; € C>®(M), (dfi A ... A dfk)(%,..., %) =
1 ol
ofi 1k

In the particular case of top forms, we have the following change-of-coordinates formula:

dzi A ... ANdxp = hdyy A ... Ndyp, h = det[g;;];ij:l.

Definition (Anti-derivation). An anti-derivation (of degree 1) D : Q*(M) — Q*(M) is
an R-linear map such that:

1. D(wAn) = (Dw) An+ (=1)Fw A (Dn),w € QF(M),n € QM)

2. D(QF(M)) C QF1(M).



Definition (Exterior derivative). An exterior derivative on M is an antiderivation D on
O (M) such that:

1. DoD=0
2. (Df(X)=Xf

Theorem 5.5. Given a smooth manifold M, a unique exterior derivative d exists.

Remark. We can write out the action of d explicitly.
For w € QF (M), dw = d(D 1<iy<.ip<n QityindTiy A oo A dxy, )

aiy,... iy,
= Zlgilg...ikgn,lgjgn o, dl’j A\ dl‘il VAP d$ik-

Lemma 5.6. F'* commutes with d.

Orientation

Definition (Orientation on a vector space). Let V be an n-dimensional vector space. [ €
A™(V) induces the orientation [vi, ..., vy] if B(v1,..,vy) > 0, where

(U1, ey Up) ~ (U1, ooy Up) <> the two basis sets are related by a matriz of positive determi-
nant.

Remark. Alternatively, we can define an equivalence class on A™(V) (which, recall, is one-
dimensional) by deeming § ~n <= [ = cn,c > 0. This allows us to define orientation as an

equivalence class of covectors.

Definition (Orientation on a manifold). A pointwise/rough orientation on M is a collection
of orientations [p,] on T,M.

Definition (Frame). A frame for an n-dimensional manifold is a collection of vector fields
X1,..., Xy such that for all p € M,{X1p,..., Xnp} forms a basis for T,M.

Definition (Smooth orientation). A pointwise orientation p is said to be smooth at p if
there exists a frame X1,...X, smooth at p such that (X1 p, ..., Xnp| ~ pip.

Definition (Orientable). A manifold M is orientable if it admits a smooth orientation.

Lemma 6.1. A connected orientable manifold has exactly two orientations.



Theorem 6.2. Let M be a smooth n-dimensional manifold. Then, the following statements
are equivalent:

1. M is orientable
2. M admits a nowhere vanishing smooth n-form

3. The transition maps on M all have positive Jacobian

Remark. An orientation can be defined on an orientable manifold by making a choice of nowhere-
vanishing top form; top forms can be partitioned into two elements through the equivalence
relation w ~ W' <= w = fu’ for some f € C°(M) such that f > 0.

Definition (Orientation-preserving maps). Let (M, [war]), (N, [wn]) be two oriented smooth
manifolds, and F' : M — N be a smooth map. We say F is orientation-preserving if

[F*WN] = [wM]

Remark. It can be shown that the third statement in the above theorem amounts to saying
precisely that all the transition maps of the manifold are orientation-preserving.

Definition (Contraction). The map i, : A¥(V) — AF=Y(V),w + iyw, called interior multi-
plication or contraction with v, is defined as i,w(vy, ..., vV—1) = W(V, V1, .oy Vg_1).

Integration

Definition (Domain of integration). A domain of integration D C R" is a bounded set
such that 0D has (n-dimensional) Lebesgque measure zero.

Definition. Let w be a top form on R™, and D be a domain of integration. Then, wa 3=
Jp fAV , where w = fdxy A ... A dxy, for some smooth function f: R™ — R.

Lemma 7.1. Let D, E be open domains of integration in R™ and G : D — E be a diffeo-
morphism. Then, given a top form w on E, fD G'w = :l:wa (depending on whether G is
orientation-preserving or reversing.)

Discussion. This fact will prove useful in the following discussion: For any compact subset
of an open set K C U, there exists a domain of integration such that K C D C D C U.

Now, let w be a compactly supported top-form of R” whose support is contained in some
open set U. Then, fU w= | pw (where D is the domain of integration via the above result).

If we restrict ourselves to compactly supported n-forms, lemma 7.1 holds for any open
subsets D, F.



Definition. Let M be a smooth oriented manifold and w a compactly supported top form
within a (positively oriented) chart (U,¢). Then, [,,w := f@(U) (o) *w.

Lemma 7.2. [, w, as defined above, is independent of choice of chart.

Definition (Integration on manifolds). Let M be a smooth oriented manifold and w a com-
pactly supported top form. Let (Uj, ;) cover supp(w), and ¥; be a subordinate partition of

unity. Then, we define
W= Yiow
fe=X ],

Remark. It can be shown that the above definition is independent of the choice of partition of
unity.

Postscript

Lie groups & Lie algebras

Definition (Lie bracket of vector fields). Let X,Y € x(M). Then, [X,Y]: C®(M) —
C*(M) is defined as X (Y f) — Y (Xf).

Definition. A Lie group G is a smooth manifold with group structure such that the map
G x G — G,(g91,92) = g1g5  is smooth.

Lemma 8.1. The space x(M) equipped with the bracket [,] forms a Lie algebra.

Lemma 8.2. Let F': M — N be a diffeomorphism. If X.Y are F-related to X,Y, then
[X,Y] is F-related to [X,Y].

Definition. Let G be a Lie group. Then, denote by Ly the diffeomorphism ¢’ — gg'.

Definition. X € x(G) is said to be left-invariant if it is Lq-related to itself for all g € G;
that iS, (dLg)g/ (Xg) = ng/.

Theorem 8.3. Let Lie(G) be the space of all left-invariant vector fields on G. Then, Lie(G)
is a Lie algebra, and Lie(G) = T.(G).



Boundary
We denote by H" the closed upper-half plane, that is, {(z1,...,x,) € R™ : 2™ > 0}.

Discussion. An n-dimensional topological manifold with boundary is a
second-countable Hausdorff space M in which every point has a neighborhood homeomor-
phic either to an open subset of R™ or to a (relatively) open subset of H".

An open subset U C M together with a map ¢ : U — R™ that is a homeomorphism onto
an open subset of R™ or H" will be called a chart for M.

We will call (U, ¢) an interior chart if ¢(U) is an open subset of R"”, and a boundary
chart if ¢(U) is an open subset of H" such that o(U) N OH™ # ().

A point p € M is called an interior point if it is in the domain of some interior chart; and
a boundary point if it is in the domain of a boundary chart that sends p to H".

The boundary of M (the set of all its boundary points) is denoted by M. It is an (n — 1)
dimension submanifold without boundary of M.

It is clear that any p € M is either an interior point or a boundary point. However, it
can also be proven that no point can be both in the interior and in the boundary.

We end by stating a landmark result in differential geometry.

Theorem 8.4 (Stokes’ theorem). Let M be a smooth, oriented n-dimension manifold with
boundary, and w be a compactly supported smooth (n-1) form. Then:

/dw:/ w
M oM
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