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The Fundamental Group

Results

The Fundamental Group of the Circle

Theorem 1.1. π1(S
1) ∼= Z

Remark. We have not mentioned a basepoint because, since the circle is path connected, the
same fundamental group will be associated regardless of the choice of point.

Proof. Define γn : I → S1, t 7→ e2πint. Each γn is a loop which goes around the circle n times.
Now, define Φ : Z→ π1(S

1), n 7→ [γn]. We claim that Φ is a group isomorphism.

• Homomorphism: We wish to show that Φ(m + n) = Φ(m) ∗ Φ(n) ⇐⇒ [γm+n] = [γm] ∗
[γn] ⇐⇒ [γm+n] = [γm ∗ γn].
γm+n(s) = e2πi(m+n)s

γm ∗ γn(s) =

{
e2πim2s s ∈ [0, 12 ]

e2πin(2s−1) s ∈ [12 , 1]
Clearly, the two are not equal as maps. We shall have to construct a nontrivial homotopy
between them.
For this, it suffices to show that γn ∼ γ1 ∗ (γ1 ∗ ...(γ1 ∗ γ1))︸ ︷︷ ︸

n times

.

We shall prove this by induction. n = 1, 2 are obvious from definition. Suppose this is
true for n = k. We now need to show that γk+1 ∼ γ1 ∗ γk.
The k + 1 divisions on the upper horizontal represent the number of loops run by γk+1.

Figure 1: The Square of Homotopy

On the lower horizontal, which shows us γ1 ∗ γk, we run one loop in half the time, and k
loops in the remaining half. The straight lines connecting the divisions show us the most
natural homotopy between the two.
Consider the horizontal line drawn at a height t. By Thales’ theorem, this will intersect
the first line at a distance f(t) = 1

k+1 + 1
2(1 − t)(1 − 2

k+1). So at t, we want to complete

our first loop by s = f(t). So for t < f(t), we write h(s, t) = e
2πi s

f(t) .
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The remaining k loops will each take 1−f(t)
k time. So, for t ≥ f(t), we write h(s, t) =

e2πik(s−f(t)).

Thus, the required homotopy is h(s, t) =

{
e
2πi s

f(t) t ∈ [0, f(t)]

e2πik(s−f(t)) t ∈ [f(t), 1]

• Surjective:

Definition (Path Lifting). Let p : E → B be a map and f : X → B be a continuous
map. A lifting of f is a map f̃ : X → E such that p ◦ f̃ = f . The following diagram
represents the situation:

E

X B

p

f

f̃

Given γ : I → S1, γ̃ : I → R is a path lift of γ if exp ◦γ̃ = γ, where exp(t) = e2πit.

Definition (Evenly Covered Neighbourhood). Let f : X → Y be a continuous surjec-
tive map. An open set U ⊆ Y is said to be evenly covered by f (or an evenly covered
neighbourhood) if f−1(U) = ⊔Vα such that for each α, Vα is open in X and f |Vα → U
is a homeomorphism.

Lemma 1.2. The following will help us establish surjectivity.

1. Given γ : I → S1, there exists 0 = t0 < t1... < tk = 1 such that γ([ti, ti+1]) lies
in some evenly covered neighbourhood of exp.

2. Given γ : I → S1, there exists a lift γ̃ : I → R which is unique if γ̃(0) ∈
exp−1(γ(0)) is fixed.

Proof. We prove the statements in order.

1. Let t ∈ I, and consider Ut ∋ γ(t) such that Ut is evenly covered by exp. We can always
find such a Ut because, observe that we can write, for U = S1\{−eiθ}, exp−1(U) =
R\ exp−1(e−iθ) = R\(Z+ θ) = ⊔k∈ZVk for any θ.
S1 is a compact metric space, and {Ut} will form an open cover of it. Therefore, by
the Lebesgue number lemma, there will exist a δ > 0 such that any set with diameter
< δ will lie in some Ut.
We can now simply choose a partition γ([0, t1], γ([t1, t2])..., γ([tk−1, 1]) such that each
set has diameter < δ; then, each will lie in some evenly covered neighbourhood.

2. Now, we know there exists 0 = t0 < t1... < tk = 1 such that γ([ti, ti+1]) lies in
some evenly covered neighbourhood. So consider γ|[t0,t1] ⊆ U0, exp

−1(U0) = ⊔k∈ZV 0
k .

Taking γ̃(0) as given, pick a k such that γ̃(0) ∈ V 0
k , and define γ̃ : [t0, t1] → R, s 7→

(exp |V 0
k
)−1(γ(s)). (This is well-defined and continuous because the restriction of exp

is a homeomorphism.)
We can now use the same method to define γ̃ on the remaining intervals and use the
pasting lemma to put together γ̃ : I → R.
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Now, to show that Φ is surjective, we need to show that an arbitrary loop γ : I → S1 is
homotopic to some γn; that is, exp(γ̃) ∼ exp(ñ), where γ̃, ñ are the unique path lifts of
γ, γn. (Note that we set γ(0) = γ(1) = 1, γ̃(0) = 0.) Now this will follow if we show that
γ̃ and ñ are based homotopic as paths.
To see this, set n = γ̃(1) − γ̃(0). (This will obviously be an integer.) Clearly, ñ(t) =
(exp)−1e2πint = nt = tγ̃(1)+(1− t)γ̃(0). This will be path homotopic to γ̃ rather trivially,
thanks to the fact that R is convex: h(s, t) = sγ̃(t) + (1− s)ñ(t).

• Injective:

Definition (Path homotopy lifting). Let γ, γ′ : I → S1 be homotopic via h : I × I →
S1, and γ̃ : I → R be a path lifting of γ. Then, the unique h̃ : I × I → R is called the
path homotopy lift of h, and is such that h̃(−, 0) = γ̃, exp ◦h̃ = h.

We shall defer the proof of the existence and uniqueness of h̃ to the next section, where a
more general version of this statement is proven.

To show that Φ is injective, we can show its kernel is 0, which is that [γn] = [γ0] =⇒ n = 0;
in other words, γn ∼ γ0 =⇒ n = 0.
Now, let h : I × I → S1 be a homotopy of based loops between γ0, γn : I → S1 with
h(0,−) = h(1,−) = 1. By homotopy lifting, we have a unique h̃ : I × I → R such that
h̃(−, 0) = γ̃n. By the uniqueness of h̃, this will also fix h̃(−, 1) = γ̃0.
Now, we have fixed h̃(1, 1) = 0, and h̃(1,−) = exp−1(h(1,−)) = exp−1(1) must be an in-
teger. Since h̃(1, t) is a continuous function and I is path connected, we have h̃(1,−) = 0
throughout.
But also, h̃(1, 0) = n =⇒ n = 0, and we are done.

The Homotopy Lifting Property

Definition (Covering). A map π : E → B is called a covering map, and E a covering space
of B, if for every x ∈ B there is an evenly covered neighbourhood U such that x ∈ U .

Definition (Homotopy lifting). We say that π : E → B has the homotopy lifting property
if the following diagram admits an h̃ such that it commutes for all Y, h, h̃0:

Y × {0} E

Y × I B

h̃0

π

h

h̃

h̃ is called the homotopy lift of h.

Remark. If we put Y = {∗}, we get back path lifting; if Y = I, we get back path homotopy
lifting.

Theorem 2.3. Covering maps have unique homotopy liftings for each Y .
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Proof. Let π : E → B be a covering map and h : Y × I → B be a homotopy. We need to show
that there exists a lift h̃ : Y × I → E of h, and further, that if h̃(−, 0) is given, h̃ is unique.

Consider, to begin with, for a given homotopy h : Y × I → B, hy : {y}× I → B. This is just
a path, and so we know it can be lifted to a unique path h̃y in E (given the starting point).

We claim that h̃ := h̃y(t)∀y ∈ Y, t ∈ I is the homotopy lift. That such an h̃ would make the
above diagram commute follows from the fact that each path lift would. So, what remains to
be checked is:

• Uniqueness: Since each path lift is unique, so will the whole thing be, and this is done.

• Continuity:

Applications

The Homotopy Lifting Property

Theorem 2.4. Let π : X̃ → X be a covering map and X be path connected. Then, all fibers
(inverse image of singletons) will have the same cardinality.

Proof. Let x1, x2,∈ X, and γ be a path from x1 to x2. Define a map φγ : π−1(x1) →
π−1(x2), x̃ 7→ γ̃x̃(1), where γ̃ is the path lift of γ which starts at x̃. Uniqueness of the path
lift forces this map to be injective. The analogous map defined on γ̄ will be injective for the
same reason.
Now, φγ̄(φγ(x̃1)) = φγ̄(γ̃x̃1(1)) = φγ̄(x̃2) = ˜̄γx̃2(1) = x̃1 =⇒ φγ̄ ◦ φγ = Idπ−1(x1). Similarly,
φγ ◦ φγ̄=Idπ−1(x2)

.
Thus, the maps are isomorphisms, proving the required.

Theorem 2.5. Let π∗ : π1(X̃, x̃0) → π1(X,x0) be the map induced by the covering. Then,
π∗ is injective.

Proof. We shall show that ker(π∗) = 0 ⇐⇒ [π(γ)] = 0 =⇒ [γ] = 0, where γ is a based loop
in the covering space.
Let h : S1× I → X be a homotopy of based loops between π(γ) and Cx0 . We would like to find
another homotopy of based loops h̃ between γ and Cx̃0 using h.
We can apply the homotopy lifting property with Y = S1, h as above and h̃(−, 0) = γ to
conclude the existence of a homotopy lift h̃ which will further satisfy π ◦ h̃(−, 1) = h(−, 1) =
Cx0 =⇒ h̃(−, 1) = π−1(x0). Now, note that, since π is continuous and {x0} is a connected set,
its preimage will also be connected.
This forces it to be a constant, because fibers are discrete under the subspace topology: For let
U be an openly covered neighbourhood around x0, so that π−1(U) is the disjoint union of open
sets Ui homeomorphic to U . Ui ∩ π−1(x0) is forced to be a singleton for each i simply because
π|Ui is a homeomorphism and so injective.
Similarly, h̃(1,−) is constant. But we already know that h̃(1, 0) = x̃0. Therefore, h̃(−, 1) =
Cx̃0 .
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Theorem 2.6 (Degree of a cover). The size of a fiber equals the index of π1(X̃, x̃0) in
π1(X,x0).

Proof. Not done in class.

The Fundamental Group of the Circle

Theorem 2.7 (Brouwer’s Fixed Point Theorem). Any continuous h : D2 → D2 has a fixed
point.

Proof. Suppose no fixed point exists. Conveniently center the disk at the origin and consider
r : D2 → S1, x 7→ (1− t0)h(x) + t0x, where t0 is such that ||r(x)|| = 1. What this map ‘does’ is
extend the line joining h(x), x to the boundary of the disk.
Observe that r is a deformation retract: Continuity follows trivially from that of h, and r|∂D2 =
IdS1 . This itself is a contradiction, because unfortunately, there can be no retract of D2 to S1.
The argument is as follows:
Let i be the inclusion map S1 ↪→ D2. We will have induced maps i∗ : π1(S

1) → π1(D2), r∗ :
π1(D2)→ π1(S

1); the induced map takes (the equivalence class of) a loop in the domain parent
space to the (equivalence class of) the loop given by the image of the original loop under the
original map.
Now, r ◦ i = IdS1 =⇒ (r ◦ i)∗ = Idπ1(S1). But also, since π1(D2) = 0, i∗ must be the trivial
map, so that (r ◦ i)∗ = r∗ ◦ i∗ = 0, which brings out the required contradiction.

Theorem 2.8 (Fundamental Theorem of Algebra). Every non-constant polynomial in C[x]
has a root in C.

Proof. Suppose p(z) = zn + a1z
n−1 + ...an−1z + an is a polynomial in C with no roots. We will

show that this forces n = 0.
Consider Hr(s) : I → S1, Hr(s) =

p(re2πis)/p(r)
|p(re2πis)/p(r)| , r ≥ 0. For each value of t, this is a loop on S1

based at 1 (Hr(1) = 1∀r). Furthermore, H0(s) = 1, so that H0 is the constant loop. But note
that Hr will be homotopic to H0 for any r (simply define h(s, t) : I × I → S1, h(s, t) = Htr).
Thus, [Hr] = 0 ∈ π1(S

1).
Now, choose r > max{1, |a1|+...+|an|}. Then, for |z| = r, |z|n = r·rn−1 > (|a1|+...|an|)|zn−1|) ≥
|a1zn−1+...anz

n−1| ≥ |a1zn−1+...an|. From this inequality, we may conclude that the polynomial
pt(z) = zn + t(a1z

n−1 + ...an) has no roots on the circle |z| = r for t ∈ I.
Now, for this fixed r, define the homotopy F (s, t) = p1−t(re2πis)/p1−t(r)

|p1−t(re2πis)/p1−t(r)| . F (1, t) = 1, F (s, 0) =

Hr(s) ∼ φ0, and F (s, 1) = e2πins = φn =⇒ φ0 ∼ φn =⇒ n = 0.

Theorem 2.9 (Borsuk-Ulam Theorem). If f : S2 → R2 is a continuous map, there exist a
pair of points {x,−x} ⊂ S2 such that f(x) = f(−x).

Proof. Suppose no such pair exists for some continuous function f , and consider g : S2 →
S1, x 7→ f(x)−f(−x)

|f(x)−f(−x)| , η : I → S2, s 7→ (cos 2πs, sin 2πs, 0), and finally, γ := g ◦ η : I → S1. It
is easy to see that γ is continuous, and since γ(0) = γ(1), we see that γ is a loop based at
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f(e1)−f(−e1)
|f(e1)−f(−e1)| = x0, where e1 = (1, 0, 0).

• γ is not nullhomotopic: Lift γ to γ̃ : I → R. Since γ(s + 1
2) = −γ(s), s ∈ [0, 12 ], we also

have γ̃(s+ 1
2) = −γ̃(s) +

q
2 , where q is an odd integer. [Argument incomplete.]

• γ is nullhomotopic: First, note that η is nullhomotopic, via h(s, t) = ((1− t2) cos 2πs, (1−
t2) sin 2πs, t). Then, γ ∼ Cx0 via g ◦ h.

This brings out the required contradiction, and we conclude that such a pair of points must
exist.
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Interlude: Connectedness

Definition. A topological space X is connected if it cannot be written as the union of two
disjoint non-empty open sets.

Definition. A topological space X is path connected if for any x, y ∈ X, there exists a
continuous γ : I → X such that γ(0) = x, γ(1) = y.

Definition. A topological space X is simply connected if it is path connected and it has
trivial fundamental group.

Definition. A topological space X is locally path connected if every x ∈ X has a path
connected open neighbourhood.

Definition. A topological space X is locally simply connected if every x ∈ X has a
neighbourhood U which is simply connected, that is, every loop in U is nullhomotopic in U.

Definition. A topological space X is semilocally simply connected if every x ∈ X has a
neighbourhood U such that every loop in U is nullhomotopic in X.
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Covering Space Theory

The Universal Cover

Let X be a path-connected topological space. We want to find a cover X̃ which is simply con-
nected. Such a cover shall be called a universal cover of X for reasons which will become clear.

First of all, suppose such a cover exists. Then, X must be semilocally simply connected: This
amounts to saying that every x ∈ X has a neighbourhood U such that i∗ : π1(U, x)→ π1(X,x)
is the zero map.
Choose an evenly covered neighbourhood and let π−1(x0) ∋ x̃0 ∈ Ũ such that π|Ũ ∼= U .
We have the following commutative diagram:

Ũ X̃

U X

ĩ

π π

i

This will induce maps between the fundamental groups:

π1(Ũ , x̃) π1(X̃, x̃)

π1(U, x) π1(X,x)

i∗

π∗ π∗

i∗

But since X̃ is simply connected, its fundamental group will be trivial. This forces i∗ to be the
zero map.

Now, suppose γ, η are two paths in X based at x0, and they are based homotopic via h. By
the homotopy lifting property, γ̃, η̃ are based paths in X̃ which are based homotopic via h̃. They
obviously agree at the starting point; we will also have γ̃(1) = η̃(1), because both of them lie
in p−1 ◦ (h(−, 1)) = h̃(−, 1), which is a connected discrete set (connected by virtue of being the
continuous pre-image of a connected set, and discrete by virtue of being the pre-image of a fiber).

It is obvious that if two paths are based homotopic in the covering space, they will be based
homotopic in the base space.

Therefore, γ ∼b η ⇐⇒ γ̃ ∼b η̃.

We now have enough heuristic constraints to furnish a final construction of the universal
cover. Observe how any x̃ ∈ X̃ is associated with an equivalence class of paths [γ], where γ is
a path in X and two paths are related if they are based homotopic as paths: Given a γ, lift it
and see the lift’s endpoint. This will remain the same for all elements of the class. Conversely,
for any element in the cover, we will obviously have a path from the basepoint to it; projecting
this down will give us the path whose equivalence class will identify the point (due to path
connectedness of X).

Definition. The universal cover of a path-connected & semilocally simply connected space
X is X̃ = Px0X/ ∼, where f ∼ g ⇐⇒ f(1) = g(1) and the two are based homotopic as
paths. The topology on it is the one generated by the basis consisting of sets of the form
Uγ = {[γ ∗ α] ∈ X̃|γ ∈ Px0X, γ(1) ∈ U,U is open and α is a path in U}.
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Theorem 3.1. X̃ is simply connected, and ev : X̃ → X, [γ] 7→ γ(1) is a covering map.

Intermediate Covers: Bottom-up

Consider the space XH := Px0X/ ∼H , where γ ∼H η ⇐⇒ γ(1) = η(1) and [γη̄] ∈ H ≤
π1(X,x0).

Notice how we get back the universal cover for H = {e}, and the base space for H = π1(X,x0)
(for in the latter case, the equivalence constraint merely says that two paths are identified sim-
ply if they form a loop without requiring said loop to be in any particular subgroup of the
fundamental group—thereby associating any x ∈ X uniquely with the equivalence class of paths
which end at it).

So:

• X̃ = X̃/{e}

• XH = X̃/H

• X = X̃/π1(X,x0)

We have a kind of ‘tower’ of topological spaces ordered by the size of the subgroup quotiented
by. The universal cover justifies its name by being that which has to be quotiented by a different
subgroup each time for a new cover to be produced.

All this suggests the following theorem:

Theorem 3.2. XH is a connected cover of X, and π1(XH) ∼= H.

Definition. Two covers are called equivalent if there exists a homeomorphism φ such that
the following diagram commutes:

(X̂, x̂0) (X ′, x′0)

(X,x0)

φ

p̂ p′

If, in particular, we set X ′ = X̂, the homeomorphisms form a group under the composition
operation. This is called the group of deck transformations of the covering space, denoted by
G(X̂).

Definition. A cover is called regular if there exists a deck transformation between any two
pre-images of the base point.
A cover is called normal if it is connected and its image under p∗ in the fundamental group
of the base space is a normal subgroup.

We shall now rattle off a number of results.

9



Theorem 3.3. Let (X,x0) be a based space, (X̃, x̃0) a cover of it with map p, and Y be
some path-connected and locally path-connected based space. The following hold:

1. For any continuous f : (Y, y0) → (X,x0), a lift of f exists ⇐⇒ f∗(π1(Y, y0)) ⊆
p∗(π1(X̃, x̃0)).

2. (X̃, x̃0) is a connected regular cover ⇐⇒ It is a normal cover.

3. G(XH) ∼= N(H)/H.

Proof. This will be long and painful.

1. We prove each implication in turn.
=⇒ : This one is easy. Suppose a lift f̃ exists. Then, p ◦ f̃ = f =⇒ p∗(π1(X̃, x̃0)) ⊇
p∗ ◦ f̃∗(π1(Y, y0)) = f∗(π1(Y, y0)) =⇒ f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)).

⇐= : Given that the condition holds, we need to define a lift of f .
Let f̃(y) := f̃(y), the endpoint of the path lift of f(γ) initialized at an x̃0 ∈ p−1(x0), where
γ is a path from y0 to y. We claim that this is a lift of f .

2. The following lemma will help us out.

Lemma 3.4. Two connected based covers are equivalent ⇐⇒ Their induced images
are equal.

=⇒ : We begin by showing that p∗(π1(X̃, x̃0)) = H0 and p∗(π1(X̃, x̃1)) = H1 are conju-
gates of each other. Consider a path γ̃ from x̃0 to x̃1. Then, p(γ̃) = g ∈ π1(X,x0). Now,
for any loop f̃ based at x̃0, γ̃

−1 ∗ f̃ ∗ γ̃ will be a loop based at x̃1 =⇒ g−1 ∗H0 ∗ g ⊆ H1.
Similarly, H0 = g ∗H1 ∗ g−1, thus proving that the two are conjugates of one another.
Now, let (X̃, x̃0) be a connected regular cover, and let p∗(π1(X̃, x̃0)) = H. We want
to show that g−1 ∗ H ∗ g = H for all g ∈ π1(X,x0). Let g = [γ], and consider the
endpoint x̃1 ∈ p−1(x0) of the lift of γ initialized at x̃0. We know by the above argu-
ment that p∗(π1(X̃, x̃1)) = g−1 ∗ H ∗ g. But also, by assumption of their equivalence,
p∗(π1(X̃, x̃1)) = H. This proves that H is normal.

⇐= : Next, we suppose (X̃, x̃0) is a normal cover. Then, H = p∗(π1(X̃, x̃0)) = g−1 ∗H ∗g
for all g ≡ [γ] ∈ π1(X,x0) Consider any x̃1 ∈ p−1(x0). By the above, p∗((X̃, x̃1)) = H′

is a conjugate of H. But since H is normal, H = H ′; and so by the lemma, (X̃, x̃1) is
equivalent to (X̃, x̃0). Since this is true for all the pre-images of x0, this proves regularity.

3. Define Φ : N(H) → G(XH), [γ] 7→ φγ̄ , the deck transformation taking γ̃(1) = x̃1 to x̃0.
We claim that this is a surjective group homomorphism with kernel H; the result will then
follow from the first isomorphism theorem.

Corollary 3.4.1. The following bijective correspondences hold:

• Subgroups ←→ Isomorphism classes of connected based covers

• Subgroups up to conjugation ←→ Isomorphism classes of connected covers
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Theorem 3.5. Let XH be a normal cover of X. Then, XH/G(XH) ∼= X.

Intermediate Covers: Top-down

Lemma 3.6. Let X be a topological space, and G be a group which acts properly discontin-
uously on it (that is, for all x ∈ X, there exists an open set U ∋ x such that g · U ∩ U = ∅
for all g ̸= e).

Given a (reasonable) based space (X,x0), a discrete group G, and a group homomorphism
ρ : π1(X,x0)→ G (which induces a natural (left) group action of π1 on G, [γ] · g := ρ([γ])g), we
wish to construct a covering Y → Y/G ∼= X, where G will act properly discontinuously on Y .

Theorem 3.7. Let Xρ := (X̃ × G)/ ∼, where (x̃, g) ∼ (ỹ, g′) ⇐⇒ ∃[γ] ∈ π1(X,x0) such
that [γ] ·g = g′, [γ∗α]X̃ = x̃ (where x̃ = [α]X̃ , if we recall the universal cover’s construction).

Then, the (right) action of G on Xρ given by (x̃, g) · g1 7→ (x̃, gg1) is properly discontin-
uous. Furthermore, Xρ/G ∼= X.

Lemma 3.8. ρ is surjective ⇐⇒ Xρ is connected.

Lemma 3.9. Let (X,x0) be a path-connected space with universal cover. Then, for any
group G, the following sets stand in bijective correspondence:

Hom(π1(X,x0), G)↔ {Based G-regular covers of (X,x0)}/G− equivalence

Here, two covers are G-equivalent if they are equivalent as covers, and if the homeomorphism
satisfies φ(g · z) = g · φ(z).

Seifert-Van Kampen theorem

Definition. The amalgamated product of two free groups, denoted by F1 ∗H F2 (where
H ≤ F1, H ≤ F2), is their free product quotiented by the normal subgroup generated
by{φ1(h)φ2(h

−1), h ∈ H}, where φ1, φ2 are the inclusion maps of H into F1, F2 respec-
tively.

Theorem 3.10. Let X = U ∪ V be such that U, V are non-empty open sets, X,U, V, U ∩ V
all have a universal cover, and U, V, U ∩ V ∋ x0 are all path-connected. Then, there exists
an isomorphism φ : π1(U,X0) ∗π1(U∩V,x0) π1(V, x0)→ π1(X,x0).
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Theorem 3.11. F2 is isomorphic to a subgroup of F3. F3 is isomorphic to a subgroup of
F2. Also, F2,F3 are not isomorphic.

Proof. There is an obvious inclusion map F2 → F3. For the converse, we shall construct two
topological spaces with fundamental group F2,F3, such that the latter is a cover of the former.
The first result will then follow from theorem 2.5.
We will use the fact that the k -bouquet of circles has fundamental group Fk.

• covers :

• π1( )= F3 : It suffices to show homotopy equivalence of the same with the 3-bouquet
of circles.
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Simplicial Homology

Definition (n-simplex). An n-simplex is the set of points ∆n = {
∑n

i=1 tivi|
∑n

i=1 ti = 1, ti ≥
0}, such that v1 − v0, ...vn − v0 are linearly independent vectors in Rn+1.

• The coefficients ti are the barycentric coordinates of the point in ∆n

• The points vi ∈ Rn+1 are the vertices of the simplex. The set of vertices will be given
an ordering.

• The standard n-simplex is the one where the vertices are the unit vectors along the
coordinate axes.

• A face of a simplex is the subsimplex with vertices as any nonempty subset of the
original one.

• The union of all the faces of ∆n is called its boundary and denoted by ∂∆n.

• The open simplex ∆n − ∂∆n is its interior.

Definition (∆-complex). A ∆−complex structure is a collection of maps σα : ∆n → X,
with n depending on α, such that:

1. The restriction of each map to the interior of the simplex is injective, and each point
in X is the image of exactly one such restriction

2. The restriction of each map to a face is another map σβ : ∆n−1 → X in the collection

3. A ⊆ X is open ⇐⇒ σ−1
α (A) is open in ∆n for each σα.
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Discussion. A simplex is intended to be a generalization of the triangle. We were interested
in triangles because any polygon can be broken down into triangles with edges identified;
we were interested in polygons, in turn because any surface can be represented as a polygon
with appropriately identified edges. Through triangles and their identifications alone, many
two-dimensional spaces can be constructed.
Based on the above definitions, one can see how a torus, the projective plane, and the Klein
bottle now all fall under the rubric of a ∆-complex based off the natural 2-simplex. Another
example which I mention because it showed up in the course was the dunce hat, wherein
we take a 2-simplex and identify all its faces.
A ∆-complex can also be thought of as built in the following way: Given ∆n

α be a collection of
disjoint simplices and Fi a collection of faces taken from all of them (such that the simplices
may have varying dimension but the faces have the same dimension), a ∆-complex X is the
disjoint union of the simplices quotiented by an identification of the faces Fi through the
canonical homeomorphism between them.

Remark. A word on orientation: The orientation of the edges in a ∆−complex will invariably be
inherited from the ordering of the vertices in the parent simplices, which implies the imposition
of certain natural conditions on them. For example, no 2-simplex can have its edges oriented
cyclically.

Definition. ∆n(X) is the free abelian group with basis the open n-simplices of X. Its ele-
ments, called n-chains, may be written without ambiguity as

∑
α nασα.

Definition. The boundary of the n-simplex [v0, ..., vn] is
∑

i(−1)i[v0, ..., v̂i, ..., vn], where the
hat indicates deletion. The boundary homomorphism ∂n : ∆n(X)→ ∆n−1(X) is defined by
σα 7→

∑
i(−1)iσα|[v0, ..., v̂i, ..., vn].

Lemma 1.1. ∂n∂n+1 = 0 (⇐⇒ Im(∂n+1) ⊆ Ker(∂n)).

Definition. The nth simplicial homology group of a ∆-complex X, H∆
n (X), is defined as

the quotient Ker(∂n)/Im(∂n+1).

Elements of Ker(∂) are called cycles, and elements of Im(∂) are called boundaries.

Discussion. The idea with the boundary homomorphism is to orient the faces of the simplex
coherently.
∆−complexes are the more general version of simplicial complexes, which is what most texts
other than Hatcher seem to be using. The former are advantegeous insofar as spaces can be
triangulated more quickly with them; the tradeoff is that, in a simplicial complex, given a
set of ordered vertices, the simplex it belongs to is uniquely determined.
More formally, given a σ : ∆n → X, a simplicial complex cannot have a τ : ∆n → X such
that σ(vi) = τ(vi) for all the vertices vi of ∆n.
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Example. Let us compute the simplicial homology groups of two basic figures.

• The circle: This can be constructed as a ∆-complex by identifying the two vertices
of a 1-simplex. Overall, then, it will have one 0-simplex (v), one 1-simplex (e), and
nothing of higher dimension. Therefore, ∆0(X) = ∆1(X) = Z, and ∆n(X) = 0 for
n ≥ 2.
This makes it immediate that the boundary map ∂n will have trivial kernel for n ̸= 0, 1,
and kernel Z for n = 0. It will also have trivial image for all n ̸= 1.
It remains to compute ∂1 : Z→ Z. But now ∂1(e) = v− v = 0, since both the vertices
of the 1-simplex are identified.
We now know that the first two homology groups are Z, and all the others are trivial.

• The torus: One can read off from the figure near the beginning of the section that the
∆−complex triangulation by way of the polygonal representation will have you end
up with one 0-simplex, three 1-simplexes, and two 2-simplexes. So, we will be dealing
with C0 = Z, C1 = Z3, C2 = Z2.
Again, for ∂0, the kernel is obviously Z and image trivial. It is also clear that the
homology groups of order≥ 3 are all trivial. What remains to be seen are the boundary
homomorphisms corresponding to n = 1, 2.
Once again, since all the vertices are identified, we will have ∂1 = 0, since it will vanish
on each of the three generators a, b, c of C1. This determines its image and kernel.
The image of each of the 2-simplexes U,L under ∂2 will be a+b−c. Thus, Im(∂2) is the
infinite cyclic group generated by a+ b−c. Finally, ∂2(pU +qL) = (p+q)(a+b−c) =
0 =⇒ p = −q. Thus, Ker(∂2) is the infinite cyclic group generated by U − L.
Having computed all the relevant kernels and images, arriving at the final homology
groups is quick work.

Singular homology

Definition. A singular n-simplex on a topological space X is a continuous map σ : ∆n →
X, where ∆n is the standard n-simplex.

Remark. The definition of a singular homology group is nearly identical to that of the simplicial
homology group. The only difference is that the basis of the free abelian groups in the chain
complex is the set of singular n-simplices in X, rather than the set of open simplices.
Note that we could only speak of the simplicial homology groups of a space through its ∆-
complex structure. No such thing seems to be required for the singular homology groups of a
space.

Theorem 1.2. If a space X can be decomposed into path components {Xα}, Hn(X) is
isomorphic to

⊕
αHn(Xα).

Proof. Since a singular n-simplex is a continuous map and an n-simplex itself is path-connected,
its image will be path-connected. So, the group Cn(X) will split into a direct sum Cn(Xα),
and the boundary maps will preserve this split in both image and kernel. Hence, the homology
groups will also split.

Theorem 1.3. If X is non-empty and path-connected, H0(X) = Z.
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Proof. H0(X) = C0(X)/Im(∂1). Define ϵ : C0(X) → Z by
∑

i niσi 7→
∑

i ni. This is obviously
surjective. If we show that its kernel equals Im(∂1), we will have H0(X) ∼= Z by the first iso-
morphism theorem.

• Im(∂1) ⊆ Ker(ϵ) : ϵ ◦ ∂1(σ) = ϵ(σ|[v1, v̂0]− σ|[v̂1, v0]) = 1− 1 = 0, where σ : ∆1 → X is a
singular 1-simplex.

• Im(∂1) ⊇ Ker(ϵ) : Suppose ϵ(
∑

i niσi) = 0 =⇒
∑

i ni = 0. We need to show
∑

i niσi is
the boundary of some element in C1(X).
The σi are maps from 0-simplices and so map to points of X. Since we assumed path-
connectedness, choose a path τi : I → X from a basepoint x0 ∈ X to σi(v0). Further, let
σ0 be the singular 0-simplex which maps to x0.
We claim that

∑
i niσi is the boundary of

∑
i niτi ∈ C1(X).

Firstly, we can consider each τi to be a singular 1-simplex from [v0, v1] to X with some
resizing. Next, note that ∂1(τi) = σi − σ0.
Therefore, ∂(

∑
i niτi) =

∑
i niσi −

∑
i niσ0 =

∑
i niσi, since

∑
i ni = 0. This completes

the proof.

Theorem 1.4. If X is a point, Hn(X) = 0 for n > 0.

Proof. For the below, suppose n ̸= 0.
There is a unique singular n-simplex σn for each n, and ∂n(σn) = 0 if n is odd and σn−1 if even.
So, depending on n, we will either have Hn(X) = Z/Z or 0/Z. In either case, it is trivial.

Homotopy invariance

Definition. For any (continuous) map f : X → Y , there is an induced homomorphism
f# : Cn(X)→ Cn(Y ), f#(

∑
niσi) =

∑
nif#(σi), where f#(σ) = f ◦ σ : ∆n → Y ∈ Cn(Y ).

Lemma 1.5. f#∂ = ∂f#

Proof. Just compute f#∂. This is almost immediate from definitions.

Remark. We say that the f#s define a chain map from the singular chain complex of X to that
of Y .

Lemma 1.6. A chain map between chain complexes f# induces homomorphisms f∗ between
the homology groups of the complexes.

Proof. If α ∈ ker(∂n) of X, then ∂α = 0 =⇒ f#(∂α) = ∂(f#α) = 0 =⇒ f#(α) ∈ ker(∂n) of
Y . Thus, f# maps cycles to cycles. Similarly, it maps boundaries to boundaries. This allow us
to define f∗ in the obvious manner.
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Definition. For P : Cn(X)→ Cn+1(Y ), ∂P+P∂ = g#−f# ⇐⇒ P is a chain homotopy
between the chain maps.

Theorem 1.7. If two maps f, g : X → Y are homotopic, they induce the same homomor-
phism f∗ = g∗ : Hn(X)→ Hn(Y ).

Proof. Given a homotopy F : X×I → Y from f to g, define the prism operators P : Cn(X)→
Cn+1(Y ) as P (σ) =

∑
i(−1)iF ◦ (σ × 1)|[v0, ..., vn].

If we show P is a chain homotopy, we are done. For then, if α ∈ Cn(x) is a cycle, g#(α)−f#(α) =
∂P (α) =⇒ (g# − f#)(α) is a boundary in Cn(Y ). This implies the equality of f∗, g∗ on the
homology class of α; and this is true of each cycle α, so that we are done.

Corollary 1.7.1. If f : X → Y is a homotopy equivalence, f∗ : Hn(X) → Hn(Y ) is an
isomorphism.

Corollary 1.7.2. Chain-homotopic chain maps induce the same homomorphism on homol-
ogy.

Relative homology

Definition. Given a space X and a subspace A ⊆ X, we denote by Cn(X,A) the quotient
group Cn(X)/Cn(A).

Discussion. We will have a sequence of boundary maps

...→ Cn(X,A)
∂−→ Cn−1(X,A)→ ...

These will form another chain complex. We call its homology groups the relative homol-
ogy groups Hn(X,A).

• Elements of Hn(X,A) will be such that α ∈ Cn(X), ∂α ∈ Cn−1(A), since they must
be in the kernel of the quotient boundary map. We call them relative cycles.

• Trivial elements of Hn(X,A) will be such that they are in the image of the previous
quotient boundary map, i.e., α = ∂β + γ, β ∈ Cn(X), γ ∈ Cn(A). We call them
relative boundaries.

Theorem 1.8. There is a long exact sequence of homology groups:

...→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)
∂−→ Hn−1(A)→ ...→ H0(X,A)→ 0

where i∗, j∗ are the maps induced by the inclusion and the quotient respectively, and ∂ will
be described in the proof.
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Proof. First, note that we have a short exact sequence of chain complexes:

0 Cn(A) Cn(X) Cn(X,A) 0

0 Cn−1(A) Cn−1(X) Cn−1(X,A) 0

i

∂

j

∂ ∂

i j

∂ : Cn(X,A) → Cn−1(X,A) is defined as the map which make the diagram commute. i, j will
both obviously be chain maps here, so that everything commutes. We can write this in a con-
densed manner as 0→ C(A)

i−→ C(X)
j−→ C(X,A)→ 0.

Next, note that, by virtue of being chain maps, i, j will induce maps i∗, j∗ down to the homology
groups.

Now, consider an element [c] ∈ Hn+1(X,A), c ∈ Cn+1(X,A). This will be such that ∂(c) = 0.
Also, by exactness, c will be in the image of j : Cn+1(X)→ Cn+1(X,A) for some x ∈ Cn+1(X).
Since everything commutes, j(∂x) = ∂j(x) = ∂0 = 0, where we are now referring to ∂ :
Cn+1(X) → Cn(X). Therefore, (∂x) ∈ Ker(j) = Im(i), i : Cn(A) → Cn(X). We write
∂(x) = i(a), a ∈ Cn(A).
Lastly, i(∂a) = ∂i(a) = ∂∂(x) = 0(∂2 = 0) =⇒ ∂(a) = 0, since i is injective.

Therefore, we define ∂ : Hn(X,A)→ Hn−1(A), [c] 7→ [a], where [a] is located by the descrip-
tion above. Before doing anything else, we need to justify why this is well-defined:

• Since i is injective, ∂(x) uniquely determines a.

• Had we chosen another x′, j(x) = j(x′), then x′ − x ∈ Ker(j) = Im(i) =⇒ x′ − x =
i(a′) ⇐⇒ x′ = x + i(a′). Ultimately, a′ will also be quotiented to the same element in
the homology group, because i(a+ ∂a′) = ∂(x′).

• Were we to choose c+∂c′ ∈ [c], j(x′) = c′, then c+∂c′ = j(x+∂x′). But since ∂(x+∂x′) =
∂x, a will ultimately be left unchanged.

Checking that this is a homeomorphism is routine. We now finally prove that the sequence of
homology groups produced is exact:

• Im(i∗) ⊆ Ker(j∗) : ji = 0 =⇒ j∗i∗ = 0, and we are done.

• Ker(j∗) ⊆ Im(i∗): Let [b] ∈ Ker(j∗) =⇒ j∗[b] = 0 =⇒ j(b) = ∂nc
′, c′ ∈ Cn(X,A).c′ =

j(b′), b′ ∈ Cn(X). We pick up a ∈ Cn(A) such that i(a) = b− ∂b′ after verifying that the
right-hand side vanishes after being acted on by j. Now, i∗[a] = [b− ∂b′] = [b].

• Im(∂) ⊆ Ker(i∗) : i∗∂([c]) = [∂b] = 0 =⇒ i∗∂ = 0, and we are done.

• Ker(i∗) ⊆ Im(∂) : Let [a] ∈ Ker(i∗) =⇒ i∗([a]) = 0. Then, i(a) = ∂b for some b ∈ Cn(X),
so that ∂[j(b)] = [a].(This will make sense because ∂j(b) = j(∂b) = ji(a) = 0 =⇒ j(b) ∈
Ker(∂n).)

• Im(j∗) ⊆ Ker(∂) : ∂j∗([b]) = ∂[j(b)] = 0, since b is a cycle =⇒ ∂b = 0, and we are done.

• Ker(∂) ⊆ Im(j∗) : Let c ∈ Ker(∂) =⇒ ∂[c] = [a] = 0 =⇒ a = ∂n(a
′), a′ ∈ Cn(A). Then,

one can easily verify that [c] = j∗([b − i(a′)]) (one can check that the representative is a
cycle).

Finally, the following result will prove useful.
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Lemma 1.9. If two maps f, g : (X,A) → (Y,B) are homotopic through maps of pairs
(X,A)→ (Y,B), then f∗ = g∗ on the relative homology groups.

Excision

Definition. For a space X, let U = {Uj} be a collection of subspaces whose interiors form
an open cover of X. Then, the subgroups CU

n (X) of Cn(X) consisting of chains
∑
niσi such

that each σi has its image contained in some set in the cover form a chain complex. We
denote its homology groups by HU

n (X).

Lemma 1.10. The inclusion i : CU
n (X)→ Cn(X) is a chain homotopy equivalence.

Proof. What we want to do here is construct a chain map ρ : Cn(x)→ CU
n (X) such that ρ◦i, i◦ρ

are both chain homotopic to identity. Then, by things which have been established previously,
it will follow that both ρ ◦ i, i ◦ ρ are identity at the level of homology groups, from which it
follows that i∗ is an isomorphism with inverse ρ∗.
Here is a natural candidate for ρ : Given a σ ∈ Cn(X), i.e., σ : ∆n → X, perform barycentric
subdivision upon the n-simplex (say, m(σ) times) until each subdivided n-simplex lands entirely
in some Uj . This will be a finite process; simply define ρ(σ) as the finite sum of these subdivisions.
The problem with defining ρ in this manner is that it will not be a chain map (this can be
checked).

Theorem 1.11. Given subspaces Z ⊆ A ⊆ X such that the closure of Z is contained in the
interior of A, the inclusion (X −Z,A−Z) ↪→ (X,A) induces isomorphisms Hn(X −Z,A−
Z)→ Hn(X,A) for all n.

Proof. Let {A,B} be a cover of X. We show that Hn(B,A ∩B) ∼= Hn(X,A).
Consider the inclusion map i : Cn(A + B) → Cn(X), where Cn(A + B) = CU

n (X), its chain-
homotopic inverse ρ and the chain homotopy D. As per their construction in the above lemma,
they all take chains in A to chains in A. Thus, we have a quotient inclusion map iq : Cn(A +
B)/Cn(A)→ Cn(X)/Cn(A), as well as quotient maps Dq, ρq. They will continue to satisfy the
relevant homotopy relationship, so that iq continues to induce an isomorphism on homology.
Lastly, note that the map Cn(B)/Cn(A ∩ B) → Cn(A + B)/Cn(A) induced by inclusion is
an isomorphism at the level of groups itself, since both groups are free with basis singular n-
simplices in B and not in A.
Composing the two maps will give us the required homology group isomorphism.

Corollary 1.11.1. Let X be a topological space and A be a nonempty closed subspace that
is a deformation retract of some neighbourhood in X. Then, the quotient map q : (X,A)→
(X/A,A/A) induces isomorphisms q∗ : Hn(X,A)→ Hn(X/A,A/A) ∼= Hn(X/A).

Proof. Let V be the neighbourhood in X that deformation retracts to A. Using lemma 1.9 and
excision judiciously, it is easy to check that the following commutative diagram has isomorphisms
for all the horizontal maps.
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Hn(X,A) Hn(X,V ) Hn(X −A, V −A)

Hn(X/A,A/A) Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A)

q∗ q∗ q∗

The right-hand vertical map is an isomorphism because it restricts to a homeomorphism on Ac.
Commutativity implies that the left-hand one is an isomorphism.

Remark. We thus have the following long exact sequence:

...→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X/A)
∂−→ Hn−1(A)→ ...→ H0(X/A)→ 0

Discussion. Whenever we have a map f : (X,A) → (Y,B), the following diagrams are
commutative:

1.
... Hn(A) Hn(X) Hn(X,A) Hn−1(A) ...

... Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B) ...

i∗

f∗

j∗

f∗

∂

f∗ f∗

j∗ j∗ ∂

2.
... Hn(A) Hn(X) Hn(X/A) Hn−1(A) ...

... Hn(B) Hn(Y ) Hn(Y/B) Hn−1(B) ...

i∗

f∗

j∗

f∗

∂

f∗ f∗

j∗ j∗ ∂

In other words:

1. The long exact sequence in theorem 1.8 is natural.

2. The long exact sequence in corollary 1.11.1 is natural.

Degree

Definition. The degree of a continuous map f : Sn → Sn, denoted by deg(f), is the integer
d such that for f∗ : Hn(S

n)→ Hn(S
n), α 7→ dα.

Discussion. Recall that the homology group of Sn is trivial everywhere except at n, where
it is Z. f∗ is, being a homomorphism from Z to Z, forced to be of the above form. Some
basic properties of degree are as follows:

• deg(1)=1

• deg (f)=0 if f is not surjective (because f∗ = 0; this will follow from the fact that Sn

minus a point is contractible).

• f ∼= g =⇒ deg(f) = deg(g)

• deg(fg)=deg(f)deg(g)

• f is a homotopy equivalence =⇒ deg(f) = ±1

• deg(f) = −1 if f is a reflection.

• deg(f) = (−1)n+1 if f has no fixed points.
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Discussion. Let f : Sn → Sn be such that f−1(y) = {x1, ..., xm}, and each point has
neighbourhood Ui, with f(Ui) ⊆ V ∋ y.
The commutative diagram below will allow us to define the local degree of f at xi, denoted
degf |xi.

Hn(Ui, Ui − xi) Hn(V, V − y)

Hn(S
n, Sn − xi) Hn(S

n, Sn − f−1(y)) Hn(S
n, Sn − y)

Hn(S
n) Hn(S

n)

≈
ki

f∗

≈
pi f∗

j
≈

f∗

≈

pi, ki are induced by inclusion.
The two isomorphisms in the upper half of the diagram are due to excision: For example,
in the first one, we set A = Sn − xi, Z = Sn − Ui, and check that Z̄ ⊂ Int(Sn − x1).
The two isomorphisms in the lower half are due to lemma 1.9.
With this, we have Z ∼= Hn(Ui, Ui − xi) ∼= Hn(V, V − y), and the local degree will be said
to be the degree of f∗.

Theorem 1.12. degf=
∑

i degf |xi.

Proof. From commutativity of the above diagram and the decomposition Hn(S
n, Sn−f−1(y)) =⊕

iHn(Ui, Ui − xi): pi(j(1)) = 1∀i =⇒ (1, 1, ...1) = j(1) =
∑

i ki(1), f∗(ki(1)) = degf |xi =⇒
degf∗ = f∗(1) = f∗(j(1)) =

∑
i degf |xi.

Example. f : S1 → S1, z 7→ zk is a map of degree k. (Elaboration)

Theorem 1.13. degSf = degf , where Sf : Sn+1 → Sn+1 is the suspension of f : Sn → Sn.

Proof. First, the following commutative diagram:

CSn CSn

Sn+1 Sn+1

Cf

q q

Sf

We have used the fact that SSn ∼= Sn+1. Cf, Sf are the obvious maps.
And now, this:

Hn(CS
n) = 0 Hn(S

n+1) Hn(S
n) Hn−1(CS

n) = 0

Hn(CS
n) = 0 Hn(S

n+1) Hn(Sn) Hn−1(CS
n) = 0

∂∼=

Sf∗ f∗

∂∼=

We have used corollary 1.11.1 and the fact that CSn/Sn ∼= Sn+1. That the boundary map is an
isomorphism follows from exactness. Since naturality implies that this diagram also commutes,
we have the desired result.
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Mayer-Vietoris sequences

Discussion. Let {A,B} be open sets in X whose interiors form a cover. Then, the following
is a short exact sequence:

0→ Cn(A ∩B)
ϕ−→ Cn(A)

⊕
Cn(B)

ψ−→ Cn(A+B)→ 0

where ϕ(x) = (x,−x) and ψ(x, y) = x+ y.
Now, following a procedure identical to the one in theorem 1.8 and using the fact that
i∗ : Hn(A+B)→ Hn(X) is an isomorphism (lemma 1.10), we have the following long exact
sequence:

...→ Hn(A ∩B)
ϕ−→ Hn(A)

⊕
Hn(B)

ψ−→ Hn(X)
∂−→ Hn−1(A ∩B)→ ...

This long exact sequence is known as a Mayer-Vietoris sequence.

Cohomology Groups

Discussion. Let X be a topological space, and Cn(X) be the free abelian group with basis
being the set of singular n-simplices.
Define Cn(X) := Hom(Cn(X),Z).
Define the coboundary map as δ : Cn(X) → Cn+1(X), ψ 7→ ψ∂, where ∂ : Cn+1(X) →
Cn(X) is the relevant boundary map. (Note that ∂2 = 0 =⇒ δ2 = 0.)
We now have the following ‘dualized’ cochain complex:

...
δn+1←−−− Cn+1(X)

δn←− Cn(X)←− ...

The nth cohomology group Hn(X) is then defined as Ker(δn+1)/Im(δn).
Elements of Ker(δ) are called cocycles, and elements of Im(δ) are called coboundaries.
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