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Rings & Ideals

Definition. A ring R is a set with two binary operations (addition and multiplication) such
that

1. R is an abelian group with respect to addition

2. Multiplication is associative and distributive over addition

S ⊆ R is a subring of R if S is closed under addition and multiplication, and contains the
multiplicative identity.

Note: Henceforth, by ring we shall mean a nonzero ring which is both commutative with
respect to multiplication, and has a multiplicative identity. We call the multiplicative identity
1 and the additive identity 0.

A ring can be seen as either a generalization of fields, or a generalization of the integers. The
term ‘ring’ was first used by David Hilbert in the context of the set of algebraic integers (an
algebraic integer is a complex root of some monic polynomial whose coefficients are integers), in
order to suggest that elements had the property of ‘circling back’ to themselves. For instance,
if a3 − 4a + 1 = 0, then in general, it can be seen that an is going to be an integral linear
combination of 1, a, and a2 alone.

Definition. A ring homomorphism, f, is a mapping of a ring A to a ring B such that

1. f(x+y)=f(x)+f(y)

2. f(xy)=f(x)f(y)

3. f(1)=1

A ring homomorphism preserves structure, in the sense that the additional features (the oper-
ations) of the domain are mapped to something equivalent in the codomain. The word comes
from the Ancient Greek words homos (‘same’) and morphe (‘shape’).

Definition. An ideal I of a ring R is a subset such that (I, +) is subgroup of (R, +) and
IR ⊆ I.
We denote by (x) the ideal Rx; such ideals which are generated by one element are called
principal ideals.

An ideal tells us which elements we must identify with 0 (or, equivalently, the precise manner in
which we must wrap a ring around itself and thereby reidentify its elements) in order to modulo
the ring with a subset and obtain a quotient.
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Theorem 1.1 (The Correspondence Theorem). There is a one-to-one order-preserving cor-
respondence between the ideals J of R which contain I, and the ideals J̄ of the quotient ring
R/I, given by J = ϕ−1(J̄), where ϕ(x) = x+ I.

Proof. 1. Well-defined: It is easy to see that J is an ideal. Furthermore, since J̄ is an ideal,
0̄ ∈ J̄ =⇒ I ⊂ J , since ϕ(I) = 0̄. Therefore, for every ideal J̄ ⊆ R/I, ϕ−1(J̄) is an ideal
in R containing I.

2. Bijective: Suppose ϕ−1(J̄1) = ϕ−1(J̄2). x + I ∈ J̄1 =⇒ x ∈ ϕ−1(J̄1) =⇒ x ∈
ϕ−1(J̄2) =⇒ x+ I ∈ J̄2 =⇒ J̄1 = J̄2 by symmetry; and so the map is injective.
Let J be an ideal in R containing I, and consider J̄ = {x+ I|x ∈ J}. It is clear that J̄ is
an ideal, and that J = ϕ−1(J̄); and so the map is surjective.

3. Order-preserving: J ⊆ I ⇐⇒ ϕ−1(J̄) ⊆ ϕ−1(Ī) ⇐⇒ J̄ ⊆ Ī.

Some useful concepts:

• A zero divisor, x, in a ring is an element which "divides 0" in the sense that ∃y ̸= 0 such
that xy = 0.

• A ring with no zero divisors is an integral domain (such as Z).

• An element is nilpotent if ∃n ∈ N such that xn = 0. Any nilpotent element is a zero divisor
(but not conversely).

• An element which has a multiplicative inverse is called a unit.

• If every element in a ring is a unit, we call it a field.

• An integral domain in which every ideal is principal is called a principal ideal domain.

Theorem 1.2. Let R be a ring. Then, the following are equivalent:

1. R is a field

2. the only ideals in R are 0 and R

3. every homomorphism of R into a non-zero ring S is injective

Proof. i) =⇒ ii) and ii) =⇒ iii) are simple enough; I only document iii) =⇒ i).
Suppose x ∈ R such that x is not a unit. Then (x) ̸= (1);S = R/(x) ̸= 0. Let ϕ : R− > S be
the natural homomorphism. By assumption, ϕ is injective =⇒ ker(ϕ) = 0 = (x) =⇒ x =
0 =⇒ R is a field.

Definition. An ideal P ⊂ R is prime if P ̸= R and xy ∈ P =⇒ x ∈ P or y ∈ P .
An ideal M ⊂ R is maximal if M ̸= R and M ⊂ I ⊆ R =⇒ I = R (where the inclusion
M ⊂ I is strict).

The notion of a prime ideal, say the authors, is the central and fundamental one in commutative
algebra. They generalize the primes of arithmetic and the points of geometry. Therefore, it
would be nice to know that there is always a ‘sufficient supply’ of them. This is exactly what
theorem 1.4 will tell us.
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Theorem 1.3. Let R be a ring.

1. P is prime ⇐⇒ R/P is an integral domain

2. M is maximal ⇐⇒ R/M is a field

Proof. First, suppose P is a prime ideal. Let x̄, ȳ ∈ R/P, x̄y = 0. Then xy ∈ P =⇒ x ∈ P or
y ∈ P =⇒ x̄ = 0̄ or ȳ = 0̄, and so R/P is an integral domain.
Next, suppose R/P is an integral domain, and suppose xy ∈ P . Then x̄y = 0̄ =⇒ x̄ = 0̄ or
ȳ = 0̄ =⇒ x ∈ P or y ∈ P , and so P is prime.
Next, suppose M is a maximal ideal, and let x̄ ∈ R/M ̸= 0̄ =⇒ x /∈ M . Consider the ideal
I := {a + rx|a ∈ M, r ∈ R}. Since m ⊂ I,m ̸= I, we have I = R =⇒ a + rx = 1 for some
a, r =⇒ ¯a+ rx = 1̄ =⇒ r̄x = 1̄ =⇒ rx = 1 =⇒ x is a unit, and so R/M is a field.
Next, suppose R/M is a field. Suppose M ⊂ I ⊆ R, and pick y ∈ I−M =⇒ ȳ ̸= 0̄. Therefore,
∃z̄ such that ȳz = 1̄ =⇒ 1 − yz ∈ m ⊂ I =⇒ 1 ∈ I, since yz ∈ I. Therefore, I = R, and so
M is a maximal ideal.

Theorem 1.4. Every ring R has at least one maximal ideal.

Proof. Let Σ be the set of all ideals I ̸= R. 0 ∈ Σ =⇒ Σ ̸= ∅. Order Σ by inclusion, making it
a partially ordered set. We shall show that every chain in Σ has an upper bound.
Let Iα be a chain of ideals in Σ. Then, I =

⋃
α Iα is an upper bound of the chain: I is (clearly)

an ideal which includes each one of the others, and 1 /∈ I because 1 /∈ Iα∀α.
Thus, by Zorn’s lemma, Σ has a maximal element. This is the required maximal ideal.

Corollary 1.4.1. If I ̸= R is an ideal of R, there exists a maximal ideal of R containing I.

Proof. Apply theorem 1.4 to R/I, and then use theorem 1.1.

Corollary 1.4.2. Every non-unit of R is contained in a maximal ideal.

Proof. If x is a non-unit, consider (x). If this is maximal, we are done. If not, it is contained in
some maximal ideal, and we are once again done.

Definition. A ring with exactly one maximal ideal is called a local ring, and the field R/M
is called the residue field of R.
A ring with finitely many maximal ideals is called semi-local.

Local rings often arise due to a certain process of ‘localizing a ring’ at a prime ideal. We will
see this in detail in section 3.

Theorem 1.5. Let R be a ring.

1. If M ̸= R is an ideal such that every x ∈ R−M is a unit, then R is a local ring and
M is its maximal ideal.

2. If M is a maximal ideal such that every element x ∈ 1+M is a unit, then R is a local
ring.
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Proof. 1. Every ideal I ̸= R consists only of non-units. Therefore, I ⊆ M for every ideal,
and M is the unique maximal ideal.

2. Let x ∈ R −M . By maximality of M, (x,M) = R =⇒ xy + t = 1 for some y ∈ R, t ∈
M =⇒ xy = 1 − t ∈ 1 +M =⇒ xy is a unit =⇒ x is a unit. It follows now from 1
that R is a local ring.

Definition. The set of all nilpotent elements N of a ring R is called the nilradical of R.

Theorem 1.6. The nilradical of a ring is an ideal, and R/N has no nonzero nilpotent
element.

Proof. x ∈ N =⇒ ax ∈ N . Also, xn = 0, ym = 0 =⇒ (x+ y)m+n−1 = 0. Thus, N is an ideal.
Let x̄ ∈ R/N. x̄n = 0 =⇒ xn ∈ N =⇒ x ∈ N =⇒ x̄ = 0̄.

Theorem 1.7. The nilradical of R is the intersection of all the prime ideals of R.

Proof. x ∈ N =⇒ xn = 0 ∈ P for every prime ideal P =⇒ x ∈ P for every prime ideal
P =⇒ N ⊆

⋂
α Pα.

To prove
⋂
α Pα ⊆ N we show that x /∈ N =⇒ x /∈ P for some prime ideal P .

Pick an x /∈ N and let Σ = {I|xn /∈ I ∀n ∈ N}. 0 ∈ Σ =⇒ Σ ̸= ∅. That Zorn’s lemma is
applicable can be seen by a construction similar to 1.4. Therefore, Σ has a maximal element
P . It is clear by the construction that x /∈ P . We claim that this is also a prime ideal, that is,
a, b /∈ P =⇒ ab /∈ P .
a, b /∈ P =⇒ P ⊂ P + (a), P ⊂ P + (b) strictly =⇒ P + (a), P + (b) /∈ Σ. By the definition of
Σ, xm ∈ P + (a), xn ∈ P + (b) =⇒ xmn ∈ P + (ab) =⇒ P + (ab) /∈ Σ =⇒ ab /∈ P , and so P
is a prime ideal. This completes the proof.

Definition. The intersection of all the maximal ideals of a ring R is called the Jacobson
radical J of R.

Remark. It is clear that the Jacobson radical will always contain the nilradical, since every
maximal ideal is also prime.

Theorem 1.8. x ∈ J ⇐⇒ 1− xy is a unit for all y ∈ R.

Proof. First, suppose x ∈ J, 1−xy is not a unit for some y. By 1.4.2, it belongs to some maximal
ideal M . x ∈ J ⊆M,y ∈M =⇒ xy ∈M =⇒ 1 ∈M , a contradiction. Thus, 1− xy is a unit
for all y ∈ R.
For the converse, x /∈ J =⇒ x /∈ M for some maximal ideal M . This gives M ⊂ M + (x) =
R =⇒ 1 = u+ xy, u ∈M,y ∈ R =⇒ 1− xy = u ∈M =⇒ 1− xy is not a unit.
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Definition. Let R be a ring and I, J be ideals.

1. I + J = {x+ y|x ∈ I, y ∈ J} is an ideal. I and J are said to be coprime if I + J = R.

2. I ∩ J is an ideal.

3. IJ = {
∑

i xiyi|xi ∈ I, yi ∈ J} is an ideal.

Remark: I ∪ J is not, in general, an ideal.

It is clear that the set of all ideals will be partially ordered under inclusion; further, the supremum
of any subset of ideals will be given by their sum, and the infimum of any subset of ideals will
be given by their intersection. By the above, both will be contained in the parent set. Thus,
the ideals of a ring form a complete lattice with respect to inclusion.

Lemma 1.9. 1. I(J+K)=IJ+IK (Distributive law)

2. I∩(J+K)=I ∩ J + I ∩K if J ⊆ I or K ⊆ I (Modular law)

Definition. The direct product of the rings R1, R2...Rn is a ring Πni=1Ri , is the set of all
sequences (x1, ...xn) such that xi ∈ Ri with componentwise addition and multiplication.

Theorem 1.10. Define ϕ : R→ Πni=1R/Ii, ϕ(x) = (x+ I1, ...x+ In). Then:

1. If Ii, Ij are coprime for i ̸= j, ΠIi =
⋂
Ii

2. ϕ is surjective ⇐⇒ Ii, Ij are coprime for i ̸= j

3. ϕ is injective ⇐⇒
⋂
Ii = (0).

Proof. 1. By induction on n.
n = 2 : It is clear that always, IJ ⊆ I ∩ J . On the other hand, if I, J are coprime, there
exists x ∈ I, y ∈ J such that x + y = 1. Suppose a ∈ I ∩ J =⇒ a = a.1 = a(x + y) =
ax+ ay =⇒ a ∈ IJ =⇒ I ∩ J ⊆ IJ , and we are done.
Next, suppose this is true for I1, ...In−1, and let J = Πn−1

i=1 Ii =
⋂n−1
i=1 Ii. If we can show

J + In = R, we are done.
Now, Ii + In = R =⇒ xi + yi = 1 for some xi ∈ Ii, yi ∈ In∀Ii. (x1, ...xn−1) = ((1 −
y1), ...(1− yn−1)). But now note that Πn−1

i=1 (1− yi)− 1 ∈ In, because each term except the
first 1 in the product expanded will have some yi factors. Thus, 1 ∈ J+In =⇒ J+In = R.

2. Suppose ϕ is surjective. Without loss of generality, we show that I1, I2 are coprime. By
assumption, ∃x ∈ R such that ϕ(x) = (1, 0, ...0) =⇒ ϕ(x − 1) = (0,−1, ... − 1) =⇒
x− 1 ∈ I1. Similarly, x ∈ I2. Thus, (1− x) + x = 1 ∈ I1 + I2, and we are done.
Next, suppose Ii, Ij are coprime for i ̸= j. It suffices to show that ∃x ∈ R such that
ϕ(x) = (1, 0...0), since the proof can be repeated for any (0, ...1, ...0), and the product ring
is generated by these.
We have xi+ yi = 1, xi ∈ I1, yi ∈ Ii, i > 1. Define x = Πni=2yi = Πni=2(1−xi) =⇒ x− 1 ∈
I1, x ∈ Ii∀i > 2. Thus, ϕ(x) = (1, 0, ...0).
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3. Follows directly from the fact that ker(ϕ) =
⋂
Ii.

Theorem 1.11. Let R be a ring, P, P1, ...Pn be prime ideals and I, I1, ...In be ideals.

1. I ⊆
⋃n
i=1 Pi =⇒ I ⊆ Pi for some i.

2.
⋂n
i=1 Ii ⊆ P =⇒ Ii ⊆ P for some i, and

⋂n
i=1 Ii = P =⇒ Ii = P for some i.

Proof. 1. We show I ̸⊆ Pi for any i =⇒ I ̸⊆
⋃n
i=1 Pi by induction on n.

n = 1 : This is trivially true.
Suppose this is true for n − 1 ideals. Then, I ̸⊆ Pi for i ∈ {1, ...n} =⇒ I ̸⊆

⋃
i∈K Pi,

where K ⊆ {1, ...n}, |K| = n− 1. So for each i, we can find an xi ∈ I, xi /∈ Pj for j ̸= i by
excluding Pi from the union.
If we have xi /∈ Pi for any i, we get xi /∈ Pi∀i ∈ {1, ...n} and we are done. Suppose, then,
xi ∈ Pi for all i, and define y =

∑n
i=1 x1x2...xi−1xi+1...xn. Then y ∈ I,y /∈ Pi for all i,

since each term of the summation is not in a particular Pi, and we have I ̸⊆
⋃n
i=1 Pi.

2. Ii ̸⊆ P for all i =⇒ ∃xi ∈ Ii, xi /∈ P =⇒ Πxi ∈ ΠIi ⊆
⋂n
i=1 Ii, but Πxi /∈ P , since P is

prime and xi /∈ P for each xi. Thus,
⋂n
i=1 Ii ̸⊆ P .

Also, P =
⋂n
i=1 Ii =⇒ P ⊆ Ii∀i. But also, ΠIi ⊆

⋂
Ii =⇒ ΠIi ⊆ P =⇒ Ii ⊆ P for

some i. Thus, P = Ii for some i.

Definition. Let I, J be ideals and R be a ring.

1. The ideal quotient of I, J is defined as (I : J) = {x ∈ R : xJ ⊆ I}.
The annihilator of I is (0 : I), denoted by Ann(I).
The zero divisor of R can be written as D =

⋃
x ̸=0Ann((x)).

2. The radical of I is defined as r(I) = {x ∈ R : xn ∈ I, n ∈ N}. Alternatively, r(I) =
ϕ−1(NR/I), where ϕ is the standard homomorphism from R to R/I.

It is easy to see that the ideal quotient is an ideal. It arises in the description of the set difference
in algebraic geometry. That the radical is also an ideal follows from the fact that the nilradical
NR/I is an ideal. We can define the radical of any subset E of R in the same way. However, it
will not, in general, be an ideal. The radical of an ideal has a characterization in terms of prime
ideals similar to the nilradical.

Theorem 1.12. Let R be a ring and I, J be ideals.

1. r(I) is the intersection of all the prime ideals containing I.

2. D =
⋃
x̸=0 r(Ann((x))).

3. r(I), r(J) are coprime =⇒ I, J are coprime.

Proof. 1. By 1.7, NR/I is the intersection of all the prime ideals in R/I containing it, so
that NR/I =

⋂
Pα. r(I) = ϕ−1(NR/I) = ϕ−1(

⋂
Pα) =

⋂
ϕ−1(Pα) =

⋂
Pβ , since the
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preimage of a prime ideal is also prime. NR/I ⊆ Pα =⇒ r(I) ⊆ Pβ , and we are done.
That every prime ideal containing r(I) will be a part of this intersection follows from the
correspondence theorem.

2. ax = 0 =⇒ anx = 0∀n ∈ N. Thus, a ∈ D =⇒ a ∈ r(D) =⇒ D ⊆ r(D). Next, suppose
a ∈ r(D) =⇒ anx = 0, n ∈ N =⇒ a(an−1x) = 0 =⇒ a ∈ Ann((x)) =⇒ a ∈ D =⇒
r(D) ⊆ D, and so D = r(D).

x ∈ r(
⋃
αEα) =⇒ xn ∈

⋃
αEα =⇒ xn ∈ Eα for some α =⇒ x ∈

⋃
α r(Eα), and

so r(
⋃
αEα) ⊆

⋃
α r(Eα). On the other hand, x ∈

⋃
α r(Eα) =⇒ x ∈ r(Eα) for some

α =⇒ xn ∈ Eα =⇒ xn ∈
⋃
αEα =⇒ x ∈ r(

⋃
αEα) =⇒

⋃
α r(Eα) ⊆ r(

⋃
αEα), and

so r(
⋃
αEα) =

⋃
α r(Eα).

Thus, D = r(D) = r(
⋃
x ̸=0Ann((x))) =

⋃
x ̸=0 r(Ann((x))).

3. We show that r(I) = R ⇐⇒ I = R and that r(I + J) = r(r(I) + r(J)). Then,
r(I + J) = r(r(I) + r(J)) = r(R) = R =⇒ I + J = R, and we are done.
It is obvious that I = R =⇒ r(I) = R. Suppose r(I) = R =⇒ 1 ∈ r(I) =⇒ 1 ∈ I =⇒
I = R.
Next, x ∈ r(I + J) =⇒ xn ∈ I + J =⇒ xn = i + j =⇒ xn ∈ r(I) + r(J), since i ∈
r(I), j ∈ r(J) =⇒ x ∈ r(r(I)+ r(J)) =⇒ r(I+J) ⊆ r(r(I)+ r(J)). On the other hand,
x ∈ r(r(I) + r(J)) =⇒ xn ∈ r(I) + r(J) =⇒ xn = i+ j, im ∈ I, jk ∈ J =⇒ xr ∈ I + J
for some high enough r =⇒ x ∈ r(I + J) =⇒ r(r(I) + r(J)) ⊆ r(I + J), and we are
done.

Definition. Let f : R→ S be a homomorphism and I, J be ideals in R and S respectively.

1. The extension of I, Ie, is the ideal in S generated by f(I).

2. The contraction of J, Jc, is the ideal f−1(J) in R.

f can be factored as A p−→ f(A)
j−→ B.

p is surjective (its action is basically that of f), and there is a one-one correspondence between
ideals of f(A) and ideals of A which contain ker(f); prime ideals correspond to prime ideals.
j is injective (its action is to multiply f(A) with B). The behaviour of prime ideals under ex-
tensions of this sort is one of the central problems of algebraic number theory.

Example. Consider Z → Z[i]. If p ≡ 1(mod 4), then (p)e is the product of two distinct
prime ideals (say, (5)e = (2 + i)(2− i)). This is equivalent to Fermat’s theorem on sums of
two squares.
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Theorem 1.13. Let f : R → S be a homomorphism and I, J be ideals in R and S respec-
tively.

1. I ⊆ Iec, Jce ⊆ J

2. Jc = Jcec, Ie = Iece

3. C = {Jc|J is an ideal of S} = {I|Iec = I}, E = {Ie|I is an ideal of R} = {J |Jce = J};
F : C → E,F (I) = Ie is bijective and F−1 : E → C ≡ F−1(J) = Jc.

Proof. 1. x ∈ I =⇒ x ∈ f−1(f(I)) =⇒ I ⊆ Iec.
x ∈ Jce =⇒ x ∈ f(f−1(J)) =⇒ f−1(x) ∈ f−1(J) =⇒ x ∈ J =⇒ Jce ⊆ J .

2. We know from 1 that Jc ⊆ Jcec. But also, Jce ⊆ J =⇒ Jcec ⊆ Jc, and therefore J = Jcec.
The proof runs similarly for Ie = Iece.

3. I ∈ C =⇒ I = Jc, J is some ideal of S. But Jc = Jcec =⇒ I = Iec. Conversely,
Iec = I =⇒ I = Jc, where J = Ie, and we are done.
The proof runs similarly for E.
F is surjective: For any ideal J, set I=Jc.
F is injective: F (I1) = F (I2) =⇒ Ie1 = Ie2 =⇒ Iec1 = Iec2 =⇒ I1 = I2.

Remark. E is closed under sum and product. C is closed under intersection and radicalization.

Exercises

Prime spectrum of a ring:

Let R be a ring, X be the set of all prime ideals of R, and V (E) the set of all prime ideals of R
which contain E for any E ⊆ R. Consider the collection of sets τ = {V (E)|E ⊆ R}.

X, ∅ ∈ τ : It is clear that V (R) = ∅, V (0) = X.

τ is closed under arbitrary intersection: P ∈ V (
⋃
i∈λEi) ⇐⇒ (

⋃
i∈λEi) ⊆ P ⇐⇒ Ei ⊆ P for

all i ⇐⇒ P ∈ V (Ei)∀i ⇐⇒ P ∈
⋂
i∈λ V (Ei).

τ is closed under finite union: P ∈ V (IJ) ⇐⇒ IJ ⊆ P ⇐⇒ I ⊆ P or J ⊆ P ⇐⇒ P ∈
V (I) ∪ V (J); and so V (I) ∪ V (J) = V (IJ).
Next, IJ ⊆ I ∩ J =⇒ (I ∩ J ⊆ P =⇒ IJ ⊆ P ). But I ∩ J ⊆ P ⇐⇒ P ∈ V (I ∩ J),
and so V (I ∩ J) ⊆ V (IJ). On the other hand, P ∈ V (IJ) =⇒ IJ ⊆ P =⇒ I ⊆ P or
J ⊆ P =⇒ I ∩ J ⊆ P =⇒ P ∈ V (I ∩ J), and so V (IJ) = V (I ∩ J).

Therefore, (X, τ) form a topological space, where the collection τ gives us the closed sets of
the space. This topological space is called the prime spectrum of R, written as Spec(R). The
topology itself is called the Zariski topology. It is in this sense that a prime ideal shows up as a
point in a space.
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Example. In the Zariski topology on Z, the points are (0) and (p). (p) are all closed sets by
virtue of the fact that (p) = V ((p)). Thus, in the prime spectrum of Z, the closed sets are
finite unions of the singletons (except (0)), the null set, and the whole space. Image from
Wikipedia.

In case of R (or any field, really), X = {(0)}, and there is nothing more to be said.

Finally, consider the ring Z[x]. To describe the elements (points) of its spectrum amounts
to describing its prime ideals. Since this is a unique factorisation domain, an element is
prime iff it is irreducible. Using this, we can claim that the prime ideals of Z[x] are of four
kinds: (0), (p), where p is a prime integer, (f), where f is an irreducible polynomial, and
(p, f), where p is a prime integer and f is an irreducible polynomial in Z[x]/(p) (full proof).

The following image of it with the Zariski topology is drawn by David Mumford, and is
presently incomprehensible to me.

Affine algebraic varieties:

Let K be an algebraically closed field, and let fα(t1, ..., tn) = 0 be a set of polynomial equations
in n variables with coefficients in K. Define X = {(x1, ...xn) ∈ Kn : fα(x1, ..., xn) = 0∀α}. The
set X ⊆ Kn is called an affine algebraic variety.

Next, define I(X) = {g ∈ K[t1, ..., tn] : g(x) = 0∀x ∈ X}. The set I(X) ⊆ K[t1, ..., tn] is
(clearly) an ideal, called the ideal of the variety X.

Consider the quotient P (X) = K[t1, ..., tn]/I(X). Two functions g, h are equal in it iff g − h ∈
I(X) ⇐⇒ g = h on X. Thus, P (X) = X[t1, ...tn], and is called the coordinate ring (or affine
algebra) of X.

Consider the canonical map ϕ : K[t1, ..., tn] → P (X), ϕ(f) = f + I(X). Define ξi = ϕ(ti) =
ti + I(X). {ξi} are called the coordinate functions on X.
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Next, consider the topological space Spec(P (X)), whose points are the prime ideals of P (X).
This will have a subspace consisting of the set of maximal ideals of P (X), with the induced
topology from the parent space. Call this topological subspace Max(P (X)) = X̃.

Finally, define a map between the sets µ : X → X̃, µ(x) =Mx.
Mx = {f ∈ P (X) : f(x) = 0} and will be a maximal ideal, because Mx=ker(h), where h :
P (X) → K,h(f) = f(x), and P (X)/ker(h) ∼= K ⇐⇒ ker(h) is a maximal ideal, since K is a
field.

µ is a bijection:

1. Injectivity: x ̸= y =⇒ xi ̸= yi for some i =⇒ ξi − xi = 0 ∈Mx, but ξi − xi /∈My, since
(ξi − xi)(y) = yi − xi ̸= 0. Thus, Mx ̸=My =⇒ µ(x) ̸= µ(y) =⇒ µ is injective.

2. Surjectivity: We wish to show that every maximal ideal of P (X) is of the form Mx. We
shall prove this by assuming the weak form of Hilbert’s Nullstellensatz:

If an ideal I of K(t1, ..., tn) is proper, then the affine algebraic variety associated with it
is non-empty.

Assuming this, let M be a maximal ideal of K[t1, ...tn]. Then, Z(M) ̸= 0 =⇒ ∃x ̸= 0 :
x ∈ Z(M). This means all the polynomials in M vanish at x; and so, we have M ⊆ Mx.
By maximality, M = Mx (note that Mx = {f ∈ K[t1, ...tn] : f(x) = 0}). We can thus
onclude that every maximal ideal of K[t1, ..., tn] is of the form Mx.
The correspondence theorem tells us that there is a one-one correspondence between
maximal ideals of P (X) and maximal ideals of K[t1, ...tn] containing I(X), given by
M = ϕ−1(M), where ϕ is the canonical map between ring and quotient.
But we know that every maximal ideal of K[t1, ...tn] is of the form Mx. Thus, every max-
imal ideal of P (X) is of the form ϕ(Mx) = {f + I(x) : f(x) = 0, f ∈ K[t1, ...tn]} = {f ∈
P (X) : f(x) = 0} =Mx, and we are done.

Algebraic closure of a field:

A field F is said to be algebraically closed if every non-constant polynomial in F [x] has a root
in F .

Let K be a field, and Σ be the set of irreducible monic polynomials f in one variable with
coefficients in K.

Let the ring R = K[xf1 , ...], where there is one indeterminate for each function fi ∈ Σ, and
define an ideal of R, I, with the generating set {f(xf )|f ∈ Σ}.

I ̸= R : Suppose 1 =
∑n

i=1 gifi(xfi). All the polynomials {fi} have a root {αi} in the field
extension En of K defined inductively by E1 = K[x]/(f1);E2 = E[x]/(f2), etc. Substituting
xfi = αi, we get 1 = 0, a contradiction.

By corollary 1.4.1, there exists a maximal idealM of R containing I. Define the fieldK1 = R/M .
f(xf ) ∈M =⇒ f(xf ) = f(xf ) = 0̄ in the quotient; therefore, each polynomial f has, in K1, a
root xf .

Repeat this construction with K1 in place of K to obtain another field extension K2, and so on.
Define L =

⋃∞
n=1Kn. L is algebraically closed, because any polynomial with coefficients in it

has its coefficients in some Kn with sufficiently large n, and so its roots are in Kn+1, and hence
in the union itself.

Finally, define K ⊆ L as those elements in L for which there exists some non-zero polynomial
g(x) with coefficients in K such that g(a) = 0 (in other words, the set of elements which are
algebraic over K). K is the algebraic closure of K.
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Modules, exact sequences, tensor products

Definition. An R-module is a pair (M, µ) where M is an abelian group and µ : A×M →M
is a map such that for a, b ∈ R, x, y ∈M , we have

1. a(x+y)=ax+ay

2. (a+b)x=ax+bx

3. (ab)x=a(bx)

4. 1x=x

A map between R-modules f :M → N is an R-module homomorphism if

1. f(x+y)=f(x)+f(y)

2. f(ax)=af(x)

Lemma 2.1. An abelian group (M, +) is a module iff there is a ring homomorphism A→
E(M), where E(M) is the ring of endomorphisms on M.

Proof. If M is a module, define the homomorphism ψ : A → E(M), ψ(a) = µa, where µa(x) =
ax. If there is a homomorphism ψ : A → E(M), define the map µ : A ×M → M,µ(a, x) =
ψ(a)(x) = ax.

Example. A module helpfully offers some extra ‘elbow-room’ when dealing with a ring, and
generalizes a number of familiar concepts.

1. An ideal of a ring is a module.

2. A vector space over a field is a module. A homomorphism between modules which are
vector spaces is just a linear transformation between vector spaces.

3. Any given abelian group can be seen as a Z−module.

4. The set of all homomorphisms between two modules M and N can itself be turned into a
module over the parent ring R, denoted by HomR(M,N). In particular, Hom(R,M) ∼=
M , since f : R→M is uniquely determined by f(1).

Remark. A pair of homomorphisms µ :M ′ →M,ν : N → N ′′ induce the following mappings:

• µ̄ :Hom(M,N) →Hom(M ′, N), µ̄(f) = f ◦ µ.

• ν̄ :Hom(M,N) →Hom(M,N ′′), ν̄(f) = ν ◦ f .

Some useful concepts:

• A submodule N of M is a subgroup of M which is closed under multiplication by R.

• The quotient of M by N is the R-module M/N, where a(x + N) = ax + N . The natural
map from M to M/N is a homomorphism.

• The kernel of f :M → N is the set {x ∈M : f(x) = 0}, and is a submodule of M.
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• The image of f is the set f(M), and is a submodule of N.

• The cokernel of f is N/Im(f).

• The sum and intersection of two modules are defined as they were for ideals.

• The product IM of an ideal and a module is the set of all finite sums {
∑
aixi : ai ∈ I, xi ∈

M}, and is a submodule of M.

• (N : P ) = {a ∈ R : aP ⊆ N} for submodules N,P of M is an ideal of R.

• (0 :M) is the annihilator of M, denoted by Ann(M), and is an ideal of R.

• We call the module faithful if Ann(M) = 0.

Remark. For I ⊆ Ann(M), we can regard M as a module over R/I by defining x̄m = xm.
This is well-defined, since x̄ = ȳ =⇒ x− y ∈ Ann(M) =⇒ xm = ym =⇒ x̄m = ȳm.

• {x1, ..., xn, ...} ⊆ M are said to be generators of M if any element in M can be expressed
as a finite linear combination of them (with coefficients in R).

• A module is finitely generated if its set of generators is finite, and cyclic if it has a single
generator.

• The direct sum ⊕i∈IMi of a family of R-modules consists of the families (xi)i∈I , xi ∈ Mi,
such that only a finite number of xi are non-zero.

• The direct product Πi∈IMi is defined identically, without the restriction on the xi. It is an
R-module with the operations defined componentwise.

• A free module is one which can be written as the direct sum of cyclic modules.

One may wonder why there is a need to define the direct sum and the direct product distinctly,
when they are so similar (indeed, identical for a finite family). In a certain sense, however,
the two notions are duals. While the direct product is a product (and this is straightforward
enough), the direct sum is what is known in category-theoretic language as a coproduct.

Remark. If R = Πni=1Ri, we can rewrite it as a module direct sum decomposition R = I1⊕...⊕In,
where Ii = ((0, ...ei, ...0)), ei ∈ Ri. If we are given this decomposition, we can go back to have
R ∼= Πni=1(R/Ji), Ji = ⊕j ̸=iIj . Ii ∼= R/Ji.

Lemma 2.2. M/ker(f) ∼=Im(f) for a homomorphism f :M → N =Im(f).

Proof. For a submodule M’, define f̄ :M/M ′ → N as f̄(x̄) = f(x). Clearly, ker(f̄) = ker(f)/M’.
In the case of M’=ker(f), we have ker(f̄) = 0 =⇒ f̄ is an isomorphism, which completes the
proof.

Theorem 2.3. Let L ⊂M ⊂ N be R-modules, and M1,M2 be submodules of M.

1. (L/N)/(M/N) ∼= L/M

2. (M1 +M2)/M1
∼=M2/(M1 ∩M2)

Proof. 1. Define f : L/N → L/M, f(l +N) = l +M . Clearly, this is a surjective homomor-
phism, and ker(f) = {l +N : l ∈M} =M/N . The result follows from lemma 2.2.
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2. Consider f : M2 → (M1 + M2)/M1, f(m2) = m2 + M1. Clearly, this is a surjective
homomorphism, and ker(f) =M1 ∩M2. The result follows from lemma 2.2.

Theorem 2.4. M is a finitely generated R-module ⇐⇒ M is isomorphic to a quotient of
Rn for some n ∈ N.

Proof. First, suppose M is finitely generated, by {x1, ..., xn}. Define ϕ : Rn →M,ϕ(r1, ..., rn) =
r1x1 + ...rnxn. ϕ is an R-module homomorphism; thus, M ∼= Rn/ker(ϕ).
Conversely, suppose M ∼= Rn/I; we have a surjective (module) homomorphism from Rn to
Rn/I, and another one from Rn/I to M . Composing these two, we get a surjective R-module
homomorphism ϕ : Rn → M . Then, since Rn is generated by {ei}ni=1, M is generated by
{ϕ(ei)}ni=1, where ei = (0, ...1, ...0), with the 1 at the ith place.

Theorem 2.5. Let M be a finitely generated R−module, I ⊆ R be an ideal, and ϕ :M →M
be a homomorphism such that ϕ(M) ⊆ IM . Then ϕ satisfies an equation of the following
form, for ai ∈ I:

ϕn + a1ϕ
n−1 + ...an = 0

Proof. Let M be generated by {x1, ..., xn}. ϕ(xi) ∈ IM =⇒ ϕ(xi) =
∑n

j=1 aijxj , aij ∈ I; and
we have the following equation for each 1 ≤ i ≤ n:

n∑
j=1

(δijϕ− aij)xj = 0

Define a matrix M with entries mij = (δijϕ − aij). Then, MX = 0, where X is the column
vector comprised by the xjs. Left-multiplying by adj(M) and using adj(M)M = det(M)I, we
get Dxj = 0∀j, where D = det(M). Thus, the polynomial obtained by expanding out the
determinant is a zero endomorphism on M of the required form.

Theorem 2.6 (Nakayama’s lemma). We shall prove four interrelated statements, the second
of which is known as Nakayama’s lemma.

1. Let M be a finitely generated R−module and I ⊆ R be an ideal such that IM = M.
Then there exists x ∈ 1 + I such that x ∈ Ann(M).

2. Let M be a finitely generated R−module and I ⊆ R an ideal contained in the Jacobson
radical J of the ring. Then IM =M =⇒ M = 0.

3. Let M be a finitely generated R−module and I ⊆ R be an ideal contained in the
Jacobson radical. For any submodule N ⊆M , M = IM +N =⇒ M = N .

4. Let R be a local ring, m its maximal ideal, K=R/m its residue field, and M a finitely
generated R-module. Then M/mM is a vector space, and M is generated by those
elements {xi}ni=1 whose image {ϕ(xi)}ni=1 form a basis for M/mM (where ϕ is the
natural homomorphism from module to quotient).
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Proof. We prove each of the statements in order.

1. In theorem 2.5, take ϕ = identity. This gives 1 + a1 + ... + an = 0, and we can set x as
equal to this.

2. Two proofs are offered for this.

• By (1), ∃x ∈ 1 + I such that xM = 0. Since I ⊆ J, x ∈ 1 + J =⇒ x − 1 ∈ J =⇒
1− (x− 1)(−1) = x is a unit, by theorem 1.8. Thus, x−1xM =M = 0.

• Suppose M ̸= 0, and suppose it is generated by {x1, ..., xn}. xn ∈ IM =⇒ xn =
a1x1 + ...anxn, ai ∈ I =⇒ (1− an)xn = a1x1 + ...+ an−1xn−1.
But an ∈ I =⇒ an ∈ J =⇒ (1 − an) is a unit =⇒ xn ∈ {x1, ..., xn−1}, a
contradiction. Thus, M = 0.

3. x ∈ I(M/N) =⇒ x =
∑n

i=1 ai(mi +N) =
∑n

i=1 aimi +N ∈ IM +N ⊆ IM +N +N =
(IM + N)/N. Also, x ∈ (IM + N)/N =⇒ x =

∑n
i=1 aimi + n + N =⇒ x =∑n

i=1 aimi +N =⇒ x =
∑n

i=1 ai(mi +N) =⇒ x ∈ I(M/N).

Thus, I(M/N) = (IM +N)/N . Next, by assumption, (IM +N)/N =M/N . Therefore,
we can apply the previous theorem to M/N =⇒ M/N = 0 =⇒ M = N .

4. We can view M/mM as a K-module, sending (r + m,x + mM) to rx + mM . This
is well defined, because if r̄ = r̄′ ⇐⇒ r − r′ ∈ m, x̄ = x̄′ ⇐⇒ x − x′ ∈ mM , then
rx+mM = rx−r′(x−x′)+mM = r′x′+rx−r′x+mM = r′x′+x(r−r′)+mM = r′x′+mM .
By being a module over a field, it is a vector space.

Next, let N ⊆ M be generated by {xi}ni=1.Now, it is clear that N + mM ⊆ M , since
both of them are submodules of M . Conversely, x ∈ M =⇒ x +mM ∈ M/mM =⇒
x + mM =

∑n
i=1 kiϕ(xi) =

∑n
i=1 kixi + mM =⇒ x −

∑n
i=1 kixi ∈ mM =⇒ x =∑n

i=1 kixi + z =⇒ x ∈ N +mM , and we are done. Thus, M = mM +N .

Note that m is, in this case, the Jacobson radical; therefore, we can apply (3) to obtain
N =M , and we are done.

Remark. Nakayama’s lemma (2) governs the interaction between a ring’s Jacobson radical and
finitely generated modules. In terms of generators (4), it gives us a more precise sense in which
modules over local rings are analogous to vector spaces.

Definition. A sequence of R-modules and R-homomorphisms

...→Mi−1
fi−→Mi

fi+1−−−→Mi+1...

is said to be exact at Mi if Im(fi)=Ker(fi+1). The sequence is exact if it is exact at each
Mi.

Example. The sequence 0 → M ′ f−→ M
g−→ M ′′ → 0 is exact ⇐⇒ f is injective and g is

surjective. By the first isomorphism theorem, Coker(f) =M/f(M ′) =M/ker(g) ∼=M ′′.
A sequence of this type is called a short exact sequence.
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Theorem 2.7. The following statements characterize when a sequence is exact.

1. M ′ µ−→ M
ν−→ M ′′ → 0 is exact ⇐⇒ 0 →Hom(M ′′, N)

ν̄−→Hom(M,N)
µ̄−→Hom(M ′, N)

is exact for all R-modules N.

2. 0 → N ′ µ−→ N
ν−→ N ′′ is exact ⇐⇒ 0 →Hom(M,N ′)

µ̄−→Hom(M,N)
ν̄−→Hom(M,N ′′)

is exact for all R-modules M.

Proof. There are four parts to this proposition.

1. First, suppose the right side sequence in (1) is exact for all modules N. We have to then
show two things.

ν is surjective: Our assumption implies ν̄ is injective ⇐⇒ ker(ν̄) = 0. SettingN=Coker(ν) =
M ′′/f(M), we see that the quotient map ϕ : M ′′ → M ′′/ν(M) is identically zero, since
ν̄(ϕ) = ϕ ◦ ν = 0 =⇒ it lies in ker(ν̄). Thus, ν(M) =M ′′ =⇒ ν is surjective.

Im(µ) =Ker(ν): By assumption, µ̄ ◦ ν̄ = 0 ⇐⇒ f ◦ ν ◦ µ = 0 for all f :M ′′ → N . Setting
N = M ′′, f as identity, we have ν ◦ µ = 0 =⇒ Im(µ) ⊆ker(ν). Next, set N = M/Im(µ),
and ϕ :M → N be the projection. µ̄(ϕ) = ϕ◦µ = 0 =⇒ ϕ ∈ ker(µ̄) =⇒ ϕ ∈ Im(ν̄) =⇒
∃ψ : M ′′ → N such that ϕ = ψ ◦ ν, so that x ∈ ker(ν) =⇒ ϕ(x) = 0 ⇐⇒ x ∈ Im(µ).
Thus, ker(ν) ⊆ Im(µ), and we are done.

2. Second, suppose the left side sequence in (1) is exact. We have to once again show two
things.

ν̄ is injective: ν̄(f) = ν̄(g) ⇐⇒ f ◦ν = g◦ν. But since ν is surjective (by our assumption),
we have f = g for all m′′ ∈M ′′, and we are done.

Im(ν̄)=ker(µ̄): f ∈ Im(ν̄) =⇒ f = g ◦ ν for some g : M ′′ → N . Now, µ̄(f) = f ◦ µ =
g ◦ ν ◦ µ = 0, since Im(ν) = ker(µ). Thus, f ∈ ker(µ̄) =⇒ Im(ν̄) ⊆ ker(µ̄). Next,
f ∈ ker(µ̄) =⇒ f ◦ µ = 0 =⇒ Im(µ) ⊆ ker(f) =⇒ ker(ν) ⊆ ker(f). Now, define
g : M ′′ → N, g(m′′) = f(m), where m = ν−1(m′′). Clearly, f = g ◦ ν. We only need to
check that g is well-defined; but ν(m1) = ν(m2) =⇒ ν(m1−m2) = 0 =⇒ f(m1−m2) =
0 =⇒ f(m1) = f(m2), and we are done.

3. Third, suppose the left side sequence (2) is exact.

µ̄ is injective: µ̄(f) = µ̄(g) ⇐⇒ µ ◦ f = µ ◦ g ⇐⇒ µ(f(x)) = µ(g(x))∀x ∈ M ⇐⇒
f(x) = g(x)∀x ∈ M (since µ is injective by our assumption) ⇐⇒ f = g, and we are
done.

Im(µ̄) = ker(ν̄): f ∈ Im(µ̄) =⇒ f = µ◦g, for some g :M → N ′. Now, ν̄(f) = ν ◦µ◦g =
0, since Im(µ) = ker(ν) (by assumption) =⇒ f ∈ ker(ν̄) =⇒ Im(µ̄) ⊆ ker(ν̄). Next,
f ∈ ker(ν̄) =⇒ ν ◦ f = 0 =⇒ Im(f) ⊆ ker(ν) =⇒ Im(f) ⊆ Im(µ). Thus,
we can define g : M → N ′, g(m) = µ−1(f(m)). Clearly, f = µ ◦ g. g is well-defined:
f(m1) = f(m2) =⇒ f(m1 − m2) = 0 =⇒ g(m1 − m2) = µ−1(f(m1 − m2)) = 0, by
injectivity.

4. Finally, suppose the right side sequence (2) is exact.

µ is injective: Let n′ ∈ N ′ such that µ(n′) = 0. Now, pick any element x ∈ R, consider the
ideal generated by it, view this ideal as a module and set it as M . Finally, let f :M → N ′

be given by f(x) = n′. Then µ̄(f(x)) = µ ◦ f(x) = µ(n′) = 0 =⇒ ū(f) = 0 =⇒ f ∈
ker(µ̄) =⇒ f = 0 =⇒ n′ = 0, and so µ is injective.

Im(µ) = ker(ν): ν̄◦µ̄ = 0 ⇐⇒ ν◦µ◦f = 0 for all f :M → N ′. SettingM = N ′, f = idN ′ ,
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we have ν ◦ µ = 0 =⇒ Im(µ) ⊆ ker(ν). Finally, let n ∈ ker(ν) ⊆ N, and let g :M → N
be given by g(x) = n, where M is a cyclic module over R (as above). ν̄(g)(m) = ν(g(m)) =
ν(g(rx)) = rνg(x) = rν(n) = 0, r ∈ R; that is, g ∈ ker(ν̄) =⇒ g ∈ Im(µ̄) =⇒ g = µ ◦ψ
for some ψ : M → N ′; thus, n = g(x) = µ ◦ ψ(x) =⇒ n ∈ Im(µ) =⇒ ker(ν) ⊆ Im(µ),
and we are done.

Theorem 2.8 (Snake lemma). Let

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

f ′

µ ν

f f ′′

µ′ ν′

be a commutative diagram of R-modules and homomorphisms, with the rows exact. Then,
there exists an exact sequence

0 → Ker(f ′)
µ̄−→ Ker(f)

ν̄−→ Ker(f ′′)
d−→ Coker(f ′)

µ̄′−→ Coker(f)
ν̄′−→ Coker(f ′′) → 0

in which µ̄, ν̄ are restrictions of µ, ν and µ̄′, ν̄ ′ are induced by µ′, ν ′.

Proof. First, we define the boundary homomorphism d as follows: if x′′ ∈ Ker(f ′′), x′′ = ν(x) for
some x ∈ M (since ν will be surjective), and ν ′(f(x)) = f ′′(ν(x)) = 0 =⇒ f(x) ∈ Ker(ν ′) =
Im(µ′) =⇒ f(x) = µ′(y′) for some y′ ∈ N ′. Then d(x′′) is the image of y′ in Coker(f ′).
Formally, d(x′′) = ϕ(µ′−1(f(ν−1(x′′))), where ϕ : N ′′ → N ′/Im(f ′). The well-definedness of d
follows from the injectivity of µ′.

We have a number of things to demonstrate to prove that the sequence given is exact.

• µ̄ is injective: Follows directly from injectivity of µ.

• Im(µ̄) = ker(ν̄): x ∈ Im(µ̄) =⇒ x ∈ Im(µ) =⇒ x ∈ ker(ν) =⇒ x ∈ ker(ν̄) =⇒
Im(µ̄) ⊆ ker(ν̄).
Conversely, x ∈ ker(ν̄) =⇒ x ∈ ker(ν) =⇒ x ∈ Im(µ) =⇒ x = µ(m′),m′ ∈ M ′.
Now, µ′(f ′(m′)) = f(µ(m′)) = f(x) = 0 =⇒ f ′(m′) = 0 (by injectivity of µ′) =⇒ m′ ∈
ker(f ′). Thus, µ̄(m′) = µ(m′) = x =⇒ x ∈ Im(µ̄) =⇒ ker(ν̄) ⊆ Im(µ̄), and we are
done.

• Im(ν̄) = ker(d): m′′ ∈ Im(ν̄) =⇒ m′′ = ν̄(m),m ∈ ker(f) ⊆ M . Now, f(m) = 0 =⇒
f(m) = µ′(0), since µ′ is injective. Thus, d(m′′) = 0 =⇒ m′′ ∈ ker(d) =⇒ Im(ν̄) ⊆
ker(d).
Next, let m′′ ∈ ker(d) ⊆ ker(f ′′) ⊆M ′′ =⇒ m′′ = ν(m) for some m ∈M by surjectivity
of ν. Now, d(m′′) = 0 =⇒ n′ ∈ Im(f ′), where n′ is given by µ′(n′) = f(m). So let
n′ = f ′(m′). Since the diagram commutes, f(µ(m′)) = µ′(f ′(m′)) = µ′(n′) = f(m) =⇒
m− µ(m′) ∈ ker(f). Thus, ν̄(m− µ(m′)) = ν(m)− ν(µ(m)) = ν(m) (by exactness of the
first row) = m′′ =⇒ m′′ ∈ Im(ν̄) =⇒ ker(d) ⊆ Im(ν̄), and we are done.

• Im(d) = ker(µ̄′): Let ϕ′ : N → N/f(M) be the quotient map. Then, µ̄′ ◦ d
= µ̄′(ϕ(µ′−1(f(ν−1(x′′))))) = ϕ′(µ′(µ′−1(f(ν−1(x′′))))) = ϕ′(f(ν−1(x′′)) = 0 =⇒ Im(d) ⊆
ker(µ̄′).
Conversely, suppose n′ + f(M ′) ∈ ker(µ̄′) =⇒ µ′(n′) ∈ f(M) =⇒ µ′(n′) = f(m),m ∈
M . Set m′′ = ν(m). Then f ′′(m′′) = f ′′(ν(m)) = ν ′(f(m)) = ν ′(µ′(n′)) = 0 (by exactness
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of the sequence) =⇒ m′′ ∈ ker(f ′′). Thus, d(m′′) = n′ + f(M) =⇒ n′ + f(M) ∈
Im(d) =⇒ ker(µ̄′) ⊆ Im(d), and we are done.

• Im(µ̄′) = ker(ν̄ ′): ν̄ ′(µ̄′(n′ + f ′(M ′)) = ν̄ ′(µ′(n′) + f(M)) = ν ′(µ′(n′)) + f ′′(M ′′) = 0,
since Im(µ′) = ker(ν ′). Thus, Im(µ̄′) ⊆ ker(ν̄ ′).
Next, n+f(M) ∈ ker(ν̄ ′) =⇒ ν ′(n) = f ′′(m′′) for some m′′ ∈M ′′ similar to the previous.
Now, since ν is surjective, m′′ = ν(m) for some m ∈ M . Note that ν ′(n − f(m)) =
ν ′(n) − ν ′(f(m)) = f ′′(m′′) − f ′′(ν(m)) = f ′′(m′′) − f ′′(m′′) = 0 =⇒ n − f(m) ∈
ker(ν ′) =⇒ n − f(m) ∈ Im(µ′) =⇒ µ′(n′) = n − f(m) for some n′ ∈ N ′. And so
finally, µ̄′(n′+ f ′(M ′)) = µ(n′)+ f(M) = n− f(m)+ f(M) = n+ f(M) =⇒ n+ f(M) ∈
Im(µ̄′) =⇒ ker(ν̄ ′) ⊆ Im(µ̄′), and we are done.

• ν̄ ′ is surjective: Since ν ′ is surjective, ∀n′′∃n such that ν ′(n) = n′′. Then, for each
n′′ + f ′′(M ′′) ∈ Coker(f ′′), we have ν̄ ′(n+ f(M)) = n′′ + f ′′(M ′′).

The snake lemma is one of the basic results of homological algebra. It is easy to see where it
gets its name from from this expanded version of the diagram:

Definition. Let C be a class of R-modules and λ : C → Z be a function. Then, λ is said
to be additive if for each short exact sequence such as 0 → M ′ f−→ M

g−→ M ′′ → 0 in which
each term belongs to C, λ(M ′)− λ(M) + λ(M ′′) = 0.

Example. Let C be the class of all finite-dimensional vector spaces V over a field F . Then,
f : V → dim V is an additive function on C (this can be seen by an easy application of the
rank-nullity theorem).

Theorem 2.9. Let 0 → M0 → M1 → ... → Mn → 0 be an exact sequence of R-modules
in which all the modules Mi and the kernels of all the homomorphisms belong to a class C.
Then, for any additive function λ on C, we have

n∑
i=0

(−1)iλ(Mi) = 0

Proof. Split up the sequence into short exact sequences 0 → Ni → Mi → Ni+1 → 0, where
Ni = Im(fi), N0 = Nn+1 = 0. Then, we have λ(Mi) = λ(Ni) + λ(Ni+1). Taking an alternating
sum cancels out all the terms except λ(N0) + λ(Nn+1) = 2λ(0) = 0.
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Definition. The tensor product of two R-modules M,N is a pair (T, g) where T =M⊗RN
is an R-module and g :M ×N → T is an R-bilinear map such that, given any R-module P
and bilinear map f : M × N → P , there exists a unique linear map f ′ : T → P such that
the following diagram commutes:

M ×N T

P
f

g

f ′

A tensor product helps us by allowing us to deal with the nicer linear maps in place of
bilinear ones, since every bilinear function on M ×N factors into a linear one through T .

Theorem 2.10. The tensor product of any two modules exists and is unique upto isomor-
phism.

Proof. 1. Uniqueness: Suppose (T1, g1) and (T2, g2) are both M ⊗ N . Considering the first
and replacing (P, f) with (T2, g2) gives us a unique linear map j : T1 → T2 such that
g2 = j ◦ g1. Now, interchanging the roles of T1 and T2 gives us another unique linear map
j′ : T2 → T1 such that g1 = j′ ◦ g2. Clearly, j ◦ j′ = j′ ◦ j = Id =⇒ j is an isomorphism,
and we are done.

2. Existence: Let C be the free R-module over M ×N . An arbitrary element in it is of the
form

∑n
i=1 ri(xi, yi).

Next, let D be the submodule of C generated by all elements of the following types:

• (x+ x′, y)− (x, y)− (x′, y)

• (x, y + y′)− (x, y)− (x, y′)

• (ax, y)− a(x, y)

• (x, ay)− a(x, y).

Finally, define T = C/D, and let x⊗y denote the image of (x, y) ∈ C in T ; T is generated
by elements of the form x⊗ y.
It is easy to check that the mapping g : M × N → T, g(x, y) = x ⊗ y is bilinear by
construction. We claim that the pair (T, g) is the required tensor product.
Any map f :M ×N → P can extend linearly to an R-module homomorphism f̄ : C → P.
If f happens to be bilinear in particular, then it vanishes on D and so induces a well-defined
homomorphism f ′ : T → P such that f ′(x ⊗ y) = f(x, y); since f ′ is uniquely defined by
this condition, (T, g) satisfy the requirements of being a tensor product.

Remark. {x⊗ y} generate T , where x ∈M,y ∈ N .

Example. Let R = Z,M = Z, N = Z/2Z, 2Z = M ′ ⊆ M,N ′ = N . Let x be the nonzero
element in N ′. Then, as an element of M ⊗N, 2⊗ x = 1⊗ 2x = 1⊗ 0 = 0.
On the other hand, suppose it is zero as an element of M ′ ⊗N ′. Clearly, this would mean
M ′ ⊗ N ′ = 0. But this would also mean any map from 2Z ⊗ Z/2Z to any R-module (in
particular, Z/2Z) would be trivial, which is not true of (for example) f(2z, x) = zx.
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Corollary 2.10.1. Let xi ∈M,yi ∈ N such that
∑
xi⊗ yi = 0 in M ⊗N . Then there exist

finitely generated submodules M0 ⊆M,N0 ⊆ N, such that xi ⊗ yi = 0 in M0 ⊗N0.

Proof. If
∑
xi ⊗ yi = 0 in M ⊗N =⇒

∑
(xi, yi) = 0 in C/D =⇒

∑
(xi, yi) is a finite linear

combination of the generators of D.
Let M0 be generated by the xi and the elements of M which occur as the first coordinates in
those generators of D, and define N0 similarly.
Therefore, by construction,

∑
(xi, yi) ∈ D′, where D′ is the analogously defined submodule of

the free module over M0 ×N0; and so finally,
∑
xi ⊗ yi = 0 in M0 ⊗N0.

Definition (Multitensor product). Let M1, ...Mr be modules. Their tensor product M1 ⊗
... ⊗Mr is another module T along with a multilinear map g : M1 × ... ×Mr → T such
that for any R-module P and multilinear map f :M1 × ...×Mr → P , there exists a unique
homomorphism f : T ′ → P such that f ′ ◦ g = f .

Theorem 2.11. Let M, N, P be R-modules. Then, the following modules are isomorphic:

1. M ⊗N ∼= N ⊗M

2. (M ⊗N)⊗ P ∼=M ⊗ (N ⊗ P ) ∼=M ⊗N ⊗ P

3. (M ⊕N)⊗ P ∼= (M ⊗ P )⊕ (N ⊗ P )

4. R⊗M ∼=M

Proof. We shall construct certain canonical isomorphisms between the enumerated modules.

1. Consider the mapping (x, y) 7→ y ⊗ x from M × N → N ⊗M . Since this is bilinear, it
induces a homomorphism f :M ⊗N → N ⊗M such that f(x⊗ y) = y ⊗ x.
We can analogously construct a homomorphism g : N ⊗M → M ⊗N, g(y ⊗ x) = x ⊗ y.
Since f ◦g and g◦f are identity maps, they are each isomorphisms, and so M⊗N ∼= N⊗M .

2. We shall first construct homomorphisms f, g : (M⊗N)⊗P f−→M⊗N⊗P g−→ (M⊗N)⊗P .
and show that they are well-defined.
First, fix z ∈ P and consider the map (x, y) 7→ x ⊗ y ⊗ z from M × N → P ′. This is
bilinear and thus induces a homomorphism fz : M ⊗ N → P ′ = M ⊗ N ⊗ P such that
fz(τ(x, y)) = fz(x⊗ y) = x⊗ y ⊗ z.
Next, consider the mapping (t, z) 7→ fz(t) from (M ⊗ N) × P → M ⊗ N ⊗ P . This is
bilinear; similarly, it induces a homomorphism f : (M ⊗N)⊗ P →M ⊗N ⊗ P such that
f((x⊗ y)⊗ z) = x⊗ y ⊗ z.
Next, consider the map (x, y, z) 7→ (x ⊗ y) ⊗ z from M × N × P → (M ⊗ N) ⊗ P .
Since this is linear in each variable, it induces a homomorphism g : M ⊗ N ⊗ P →
(M ⊗N)⊗ P, g(x⊗ y ⊗ z) = (x⊗ y)⊗ z.
To see that they are isomorphisms, note that f ◦ g and g ◦ f are identity maps. Thus,
(M ⊗N)⊗ P ∼=M ⊗N ⊗ P .
A similar construction will work to show that M ⊗ (N ⊗ P ) ∼=M ⊗N ⊗ P .

3. Consider the mapping ((x, y), z) 7→ (x⊗z, y⊗z) from (M⊕N)×P → (M⊗P )⊕(N⊗P ).
Being bilinear (this can be verified easily), it induces a homomorphism f ′ : (M⊕N)⊗P →
(M ⊗ P )⊕ (N ⊗ P ), f ′((x, y)⊗ z) = (x⊗ z, y ⊗ z).
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On the other hand, consider the bilinear maps j1 : M × P → (M ⊕ N) ⊗ P such that
j1(x, z) = (x, 0)⊗ z, and j2 : N ×P → (M ⊕N)⊗P such that j2(y, z) = (0, y)⊗ z. These
both induce homomorphisms j̄1(x⊗ z) = (x, 0)⊗ z and j̄2(y ⊗ z) = (0, y)⊗ z.

Finally, consider the homomorphism j : (M ⊗ P ) ⊕ (N ⊗ P ) → (M ⊕N) ⊗ P , such that
j(x⊗ z, y ⊗ z) = j̄1(x⊗ z) + j̄2(y ⊗ z) = (x, 0)⊗ z + (0, y)⊗ z = (x, y)⊗ z.

Clearly, f ◦ j and j ◦ f are the identity mappings; therefore, f is an isomorphism. We
conclude that (M ⊕N)⊗ P ∼= (M ⊗ P )⊕ (N ⊗ P ).

4. Consider the canonical mapping (r,m) → rm from R×M →M . Since this is bilinear, it
induces a homomorphism f : R⊗M →M such that f(r ⊗m) = rm.
On the other hand, consider g :M → R⊗M such that g(x) = 1⊗x. g◦f(a⊗x) = g(ax) =
1⊗ax = a⊗x =⇒ g◦f = Id. Similarly, f◦g(1⊗x) = f(x) = f(1x) = 1⊗x =⇒ f◦g = Id.
Thus, f is an isomorphism =⇒ R⊗M ∼=M.

Remark. The third part of the above theorem states, in effect, that the tensor product distributes
over the direct sum.

Lemma 2.12. Hom(M ⊗N,P ) ∼= Hom(M,Hom(N,P ))

Proof. Let f : M ×N → P be a bilinear map. This induces a linear map fx : N → P, fx(y) =
f(x, y). Thus, f induces a map from M → Hom(N,P ), x 7→ fx. This will also be linear, since
f is linear in x.
Conversely, consider any homomorphism ϕ : M → Hom(N,P ). This will define a bilinear map
from M ×N → P, (x, y) 7→ (ϕ(x)) ◦ (y).
Thus, the set S of bilinear mappingsM×N → P is in one-one correspondence withHom(M,Hom(N,P )).
On the other hand, S is naturally in one-one correspondence with Hom(M⊗N,P ) by the defin-
ing property of the tensor product. Hence, proved.

Definition. Let f : M → M ′, g : N → N ′ be two module homomorphisms and define
h : M ×N → M ′ ⊗N ′, h(x, y) = f(x) ⊗ g(y). It is easy to see that h is bilinear. Thus, it
induces a homomorphism f⊗g :M⊗N →M ′⊗N ′ such that (f⊗g(τ(x, y)) = h(x, y) ⇐⇒
(f ⊗ g)(x⊗ y) = f(x)⊗ g(y).

Theorem 2.13. Let
M ′ f−→M

g−→M ′′ −→ 0

be an exact sequence, and let N be any module. Then,

M ′ ⊗N
f⊗IdN−−−−→M ⊗N

g⊗IdN−−−−→M ′′ ⊗N −→ 0

is exact.

Proof. Let P be a module. By theorem 2.7, the sequence

0 → Hom(M ′′, Hom(N,P ))
ḡ−→ Hom(M,Hom(N,P ))

f̄−→ Hom(M ′, Hom(N,P ))
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is exact.
By lemma 2.12, the sequence

0 → Hom(M ′′ ⊗N,P )
ḡ′−→ Hom(M ⊗N,P )

f̄ ′−→ Hom(M ′ ⊗N,P )

is exact.
And so by another application of theorem 2.7, we conclude that the sequence

M ′ ⊗N
f⊗IdN−−−−→M ⊗N

g⊗IdN−−−−→M ′′ ⊗N −→ 0

is exact. It remains to be seen why the maps are of the stated form. Consider f̄ ′. This
is obtained by a composition of the maps Hom(M ⊗ N,P ) → Hom(M,Hom(N,P ))

−◦f−−→
Hom(M ′, Hom(N,P )) → Hom(M ′ ⊗N,P ). The last isomorphism is given by α(ϕ)(m⊗ n) =
ϕ(m)(n) = hm(n), where ϕ :M ′ → Hom(N,P ), hm : N → P .
Thus, the maps composed are ((m⊗n) 7→ hm(n)) → (m 7→ hm) → (m′ 7→ hf(m′)) → (m′⊗n 7→
hf(m′)(n)). Overall, the map amounts to precomposition with f ⊗ IdN .

Example. Let R = Z, and consider an exact sequence 0 → Z f−→ Z, where f(x) = 2x.
Tensor this sequence with N = Z/2Z. The sequence 0 → Z ⊗ Z/2Z f⊗1−−→ Z ⊗ Z/2Z is
not exact, because (f ⊗ 1)(x ⊗ y) = 2x ⊗ y = x ⊗ 2y = x ⊗ 0 = 0 =⇒ f ⊗ 1 = 0, but
Z⊗ Z/2Z ̸= 0.
This shows that the last zero term in the statement of theorem 2.13 is crucial for it to hold.

Remark. If we define T (M) =M ⊗N,U(P ) = Hom(N,P ), then lemma 2.12 states that, for all
modules M,P, Hom(T (M), P ) ∼= Hom(M,U(P )).
In category-theoretic terms, the functor T is the left-adjoint of U , and U is the right-adjoint of
T ; and the above theorem states that any functor which is a left adjoint is right exact (where
the ‘right’ signifies the necessity of a 0 at the right end). As it so turns out, it is also true that
any functor which is a right adjoint is left exact.

Definition. If tensoring with N transforms all exact sequenes into exact sequences, then N
is said to be a flat R-module.

Theorem 2.14. The following are equivalent for an R-module N:

1. N is flat

2. If 0 → M ′ → M → M ′′ → 0 is an exact sequence, 0 → M ′ ⊗ N → M ⊗ N →
M ′′ ⊗N → 0 is exact

3. If f :M ′ →M is injective, then f ⊗ 1 :M ′ ⊗N →M ⊗N is injective.

4. If f : M ′ → M is injective and M,M ′ are finitely generated, then f ⊗ 1 : M ′ ⊗N →
M ⊗N is injective.

Proof. 4 =⇒ 3: Suppose f : M ′ → M is injective and let u =
∑
x′i ⊗ yi ∈ ker(f ⊗ 1) ⊆

M ′ ⊗N =⇒
∑
f(x′i)⊗ yi = 0 ∈M ⊗N . We wish to show that u = 0.

By corollary 2.10.1, there exist finitely generated submodules M0 ⊆ M,N0 ⊆ N , such that∑
f(x′i)⊗ yi = 0 ∈M0 ⊗N0.
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Let M ′
0 ⊆M ′ be generated by {x′i}, and u0 =

∑
x′i⊗yi be the corresponding element in M ′

0⊗N0.
Then, for the restriction f0 : M ′

0 → M0, (f0 ⊗ 1)(u0) = 0 =⇒ u0 = 0 ∈ M ′
0 ⊗N0, since f0 ⊗ 1

is injective by assumption (M0,M
′
0 are finitely generated). Thus, u = 0 ∈ M ⊗N , and we are

done.

1 =⇒ 2 is trivial from definition, but 2 =⇒ 1 is not ; it tells us that if a module preserves short
exact sequences on tensoring, it must preserve long exact sequences as well. It can be proven by
breaking up an LES into SES and applying flatness on each.

2 =⇒ 3, 3 =⇒ 4 are trivial. 3, together with theorem 2.13, implies 2.

Definition. Let f : A → B be a ring homomorphism and M,N be modules over A,B
respectively. Then:

1. N has an A-module structure by restriction of scalars as follows: If a ∈ A, x ∈ N,
then (a, x) → f(a)x.

2. In this way, B can also be regarded as an A-module; and so the tensor product MB =
B ⊗M is an A-module. This can be given B-module structure by extension of scalars
as follows: If b ∈ B, b′⊗x ∈MB, then (b′, b⊗x) → bb′⊗x. MB is an (A, B)-bimodule.

3. The ring B, equipped with the A-module structure (via the homomorphism), is said to
be an A-algebra. An A-algebra is a ring B and a homomorphism f : A→ B.

4. An A-algebra homomorphism h : B → C is a ring homomorphism which is also a
module homomorphism.

• An A-algebra B and the associated ring homomorphism f : A→ B are finite if B is finitely
generated as an A-module.

• The homomorphism is of finite type, and B is a finitely generated A-algebra, if there exists
a finite set of elements in B, {x1, , , ., xn} such that every element of B can be written as
a polynomial in them with coefficients in f(A). Note that this is weaker than saying they
are finite.

• A ring A is said to be finitely generated if it is finitely generated as a Z−algebra.

Remark. Two remarks can be made here.

1. Every ring is a Z-algebra by virtue of the natural homomorphism f : Z → A, f(n) = n.1.

2. If R is a field, an R-algebra is effectively a ring containing R as a subring (since any
homomorphism f : R→ S will be injective).

Theorem 2.15. The following statements hold for modules obtained via restriction & ex-
tension of scalars:

1. Suppose N is finitely generated as a B-module and B is finitely generated as an A-
module. Then N is finitely generated as an A-module.

2. If M is finitely generated as an A-module, MB is finitely generated as a B-module.

Proof. 1. If {yi}ni=1 generates N over B and {xi}ni=1 generates B over A, then the mn products
xiyi generates N over A.
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2. If {xi}ni=1 generates M over A, then {1⊗ xi}ni=1 generates MB over B.

Corollary 2.15.1. M is a flat A-module =⇒ MB is a flat B-module.

Proof. Let 0 →M ′ →M →M ′′ → 0 be an exact sequence of B-modules. Then:
0 →M ′ ⊗B MB →M ⊗B MB →M ′′ ⊗B MB → 0
≡ 0 →M ′ ⊗B (B ⊗AM) →M ⊗B (B ⊗AM) →M ′′ ⊗B (B ⊗AM) → 0
≡ 0 → (M ′ ⊗B B) ⊗A M → (M ⊗B B) ⊗A M → (M ′′ ⊗B B) ⊗A M → 0, which is an exact
sequence of A-modules by flatness of M. By an application of theorem 2.14, we conclude that
MB is flat as a B-module.

Note that here we have used the fact that for an A-module M, B-module P, and (A, B)-bimodule
N, (M ⊗A N)⊗B P ∼=M ⊗A (N ⊗B P ). This can be proven in the following manner:
The map fz(x, y) = x ⊗A (y ⊗B z) is bilinear and thus yields a homomorphism M ⊗A N →
M ⊗A (N ⊗B P ). Next, the map g(x ⊗A y, z) = x ⊗A (y ⊗B z) is bilinear and thus yields a
homomorphism (M ⊗A N)⊗B P →M ⊗A (N ⊗B P ). A symmetric argument will construct its
inverse and show that the two are isomorphisms.

Lemma 2.16. Let f : A → B, g : A → C, h : B → C be ring homomorphisms. Then h is
an A-algebra homomorphism if and only if h ◦ f = g.

Proof. If h◦f = g, then h(ax) = h(f(a)x) = h(f(a))h(x) = g(a)h(x) = ah(x), and we are done.
Conversely, if h is a module homomorphism, then h(ax) = ah(x) ⇐⇒ h(f(a))h(x) =
g(a)h(x)∀x ⇐⇒ h ◦ f = g.

Example. We shall turn D = B ⊗A C into an A-algebra (where B and C are A-algebras
with homomorphisms f and g respectively).

First, we need to define a multiplication on D.
Consider the mapping B × C × B × C → D defined by (b, c, b′, c′) 7→ bb′ ⊗ cc′. This is
multilinear and so induces a homomorphism B ⊗ C ⊗ B ⊗ C → D. By theorem 2.24, this
will be a homomorphism from D ⊗D → D.
This homomorphism will, in turn, correspond to a bilinear map µ : D ×D → D such that
µ(b⊗ c, b′ ⊗ c′) = bb′ ⊗ cc′.
With this multiplication, D becomes a commutative ring with identity 1⊗ 1. Finally, with
the homomorphism a 7→ f(a)⊗ g(a), D procures the A-algebra structure.

Remark. The following diagram commutes:

B

A D

C

uf

g v

where u(b) = b⊗1, v(c) = 1⊗ c. This is because f(a)⊗1 = (f(a).1)⊗1 = (a.1)⊗1 = a(1⊗1) =
1⊗ (a.1) = 1⊗ g(a) ∈ B ⊗ C = D.

23



Exercises

Direct limits:

A direct limit is a way to construct a large object from smaller ones in a certain way. It is a
special case of the concept of a colimit in category theory. We shall construct the direct limit
of a collection of modules.

A partially ordered set I is called a directed set if for every pair of elements i, j ∈ I, ∃k ∈ I such
that i ≤ k, j ≤ k.

Let R be a ring, I be a directed set and (Mi)i∈I be a family of modules over R. Further, for each
pair i, j ∈ I such that i ≤ j, let µij : Mi → Mj be a homomorphism and suppose the following
conditions are satisfied:

1. µii is the identity mapping of Mi,∀i ∈ I

2. µik = µjk ◦ µij whenever i ≤ j ≤ k.

Then, M=(Mi, µij) are said to form a direct system over I.

Finally, we shall construct a module M which will be known as the direct limit of the direct
system M. Let C =

⊕
i∈IMi, and ϕi : Mi → M be the natural injection map. Define a

submodule D ⊆ C as being generated by all elements of the form (ϕi−ϕj ◦µij)(xi), where i ≤ j.

Let M = C/D, and µ : C → M be the natural quotient map. Let µi be its restriction to Mi,
that is, µi(xi) = ϕi(xi) +D. Clearly, µi(xi) = ϕi(xi) +D = ϕj ◦ µij(xi) +D = µj ◦ µij(xi) ⇐⇒
µi = µj ◦ µij , i ≤ j. The pair (M, {µi}i∈I) is called the direct limit of the direct system M and
is represented by lim−→Mi.

An alternative helpful way of characterizing direct limits is as follows: Given a direct system
(Mi, µij), for any module N , consider homomorphisms αi : Mi → N such that αi = αj ◦ µij
whenever i ≤ j. The direct limit of the system is a module M such that there exists a unique
homomorphism from M → N which satisfies αi = α ◦ µi.

In other words, it is the pair (M, {µi}i∈I) which makes the following diagram commute uniquely
for every (N, {αi}i∈I):

Mi Mj

M

N

µij

µi

αi

µj

αj
α

It is a special one of all the possible pairs (N, {αi}i∈I); if we call each pair a target, the direct
limit is the universally repelling target.
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Discussion. The notion of a direct limit satisfies a number of nice properties.

• Any module is the direct limit of its finitely generated submodules:

Let (Mi)i∈I be a family of submodules of some R−module such that for any pair
i, j ∈ I, ∃k ∈ I such that Mi +Mj ⊆ Mk. Define i ≤ j ≡ Mi ⊆ Mj . It is clear that,
under this order, I is a directed set. If we define µij :Mi →Mj to be the embedding
of Mi in Mj , then (Mi, µij) form a direct system.

We need to show that lim−→Mi =
⋃
Mi. Given this, let M be a module and (Mx)x∈M be

a family of submodules, where Mx is the submodule generated by x. Any two finitely
generated submodules Mx,My are contained in a third finitely generated submodule,
Mx +My. Therefore, M =

⋃
Mx = lim−→Mx, and the statement follows.

• Direct limits preserve exactness:

Let M=(Mi, µij), N=(Ni, νij), P=(Pi, ηij) be three direct systems over the same
directed set I, and M,N,P be their direct limits with families of homomorphisms
µi, νi, ηi.

The homomorphism Φ : M → N is defined by a family of homomorphisms ϕi :
Mi → Ni such that ϕj ◦ µij = νij ◦ ϕi. It can be shown that this defines a unique
homomorphism ϕ = lim−→ϕi :M → N such that ϕ ◦ µi = νi ◦ ϕi.

Let Θ : N → P, θi : Ni → Pi, θ : N → P be defined analogously. Then, the following
holds:

If Mi
ϕi−→ Ni

θi−→ Pi is exact ∀i ∈ I, then M
ϕ−→ N

θ−→ P is exact. Another way of
stating the precondition is to say that the sequence M Φ−→ N Θ−→ P is exact.

• Tensor products commute with direct limits:

Let (Mi, µij) form a directed system over I. It is clear that for any module N ,
(Mi ⊗N,µij ⊗ 1) forms a direct system. Then, the following holds:

lim−→(Mi ⊗N) ∼= (lim−→Mi)⊗N .
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Ring of fractions

Definition. The field of fractions of an integral domain R is R × (R/{0})/ ∼, where ∼ is
an equivalence relation on R× (R/{0}) defined by (a, s) ∼ (b, t) ⇐⇒ at− bs = 0.

Lemma 3.1. ∼ is an equivalence relation.

Proof. It is obvious that it is reflexive. Further, (a, s) ∼ (b, t) ⇐⇒ at− bs = 0 ⇐⇒ bs− at =
0 ⇐⇒ (b, t) ∼ (a, s) =⇒ it is symmetric.
Finally, suppose (a, b) ∼ (c, d) =⇒ ad = bc, and (c, d) ∼ (e, f) =⇒ cf = de. Then, adf =
bcf, bde = bcf =⇒ adf = bde =⇒ af = be (since R is an integral domain) =⇒ (a, b) ∼ (e, f).
Thus, ∼ is transitive as well.

We shall generalize this construction to rings which are not integral domains.

Discussion. Let R be any ring and S be a multiplicatively closed subset of R, i.e., 1 ∈ S
and S is closed under multiplication, i.e., S is a sub-semigroup of (R, ·). Define ≡ on
R× S : (a, s) ≡ (b, t) ⇐⇒ (at− bs)u = 0 for some u ∈ S.
It is clear that this relation is symmetric. Furthermore, since 1 ∈ S, it is also reflexive.
To show that it is transitive, suppose (a, s) ≡ (b, t) =⇒ atv = bsv for some v ∈ S and
(b, t) ≡ (c, u) =⇒ buw = ctw,w ∈ S. We then have au(tvw) = (buw)sv = cs(tvw) =⇒
(au − cs)tvw = 0. Since S is closed under multiplication, tvw ∈ S =⇒ (a, s) ≡ (c, u).
Therefore, ≡ is transitive, and we conclude that it is an equivalence relation.
Denote [(a, s)] by a

s and R× S/ ≡ by S−1R, and define the following operations:

• + : S−1R× S−1R→ S−1R, (as +
b
t ) =

(at+Rbs)
st

• · : S−1R× S−1R→ S−1R, as ·
b
t =

ab
st .

Then, (S−1R,+, ·) is the ring of fractions of R with respect to S. It will also satisfy a
universal property, stated in theorem 3.32.

Remark. If R is an integral domain and S = R/{0}, then S−1R is a field (the field of fractions).

Lemma 3.2. (S−1R,+, ·) is a commutative ring with identity.

Proof. First, we must show that +, · are well-defined. It suffices to show that (a1, s1) ≡
(a2, s2) =⇒ a1

s1
+ b

t =
a2
s2

+ b
t ;
a1b
s1t

= a2b
s2t

. This is easy to check.
Commutativity of the operations follows from commutativity of R. Additive identity, additive
inverse and multiplicative identity are 0

s ,
−a
s and 1

1 respectively. Associativity and distributivity
of the operations follows from the same in R.

Theorem 3.3. Let g : A→ B be a ring homomorphism such that g(s) is a unit in B, ∀s ∈ S;
and let f : A → S−1A be the homomorphism f(x) = x

1 . Then there exists a unique ring
homomorphism h : S−1A→ B such that g = h ◦ f .

Proof. We need to prove the existence and uniqueness of h.
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1. Uniqueness: Suppose h satisfies the given conditions. Then, h(a1 ) = hf(a) = g(a), ∀a ∈ A.
If s ∈ S, h(1s ) = h(( s1)

−1) = h( s1)
−1 = g(s)−1.

Therefore, h(as ) = g(a)g(s)−1, and h is uniquely determined by g.

2. Existence: Define h(as ) = g(a)g(s)−1. First, we show that h is well-defined.
a
s = a′

s′ =⇒ (as′ − a′s)t = 0, t ∈ S =⇒ (g(a)g(s′)− g(a′)g(s))g(t) = 0 =⇒ g(a)g(s′) =
g(a′)g(s), multiplying both sides by g(t)−1. Hence, g(a)g(s)−1 = g(a′)g(s′)−1 =⇒ h(as ) =

h(a
′

s′ ).
h(as + a′

s′ ) = h(as
′+a′s
ss′ ) = g(as′ + a′s)g(ss′)−1 = g(a)g(s)−1 + g(a′)g(s′)−1 = h(as ) +

h(a
′

s′ );h(
a′

s′
a
s ) = g(aa′)g(ss′)−1 = g(a)g(s)−1g(a′)g(s′)−1 = h(a

′

s′ )h(
a
s ) =⇒ h is a homo-

morphism on S−1A.

Remark. The function f is not, in general, injective, since we could always have, for x ̸=
y, (x− y)u = 0 for u ∈ S =⇒ f(x) = f(y).

Corollary 3.3.1. If g : A→ B is a ring homomorphism such that

1. s ∈ S =⇒ g(s) is a unit in B

2. g(a) = 0 =⇒ as = 0 for some s ∈ S

3. Every element in B is of the form g(a)g(s)−1,

then there exists a unique isomorphism h : S−1A→ B such that g = h ◦ f .

Proof. We have to show that h(as ) := g(a)g(s)−1 is an isomorphism. By (3), it is surjective. But
also, h(as ) = 0 =⇒ g(a) = 0 =⇒ at = 0, t ∈ S =⇒ a

s ∼ 0
t =⇒ a

s = 0 =⇒ h is injective,
and we are done.

Remark. In particular, it is easy to see that the ring S−1A and f also satisfy these properties,
in which case the isomorphism h is merely identity.

Discussion. For any multiplicatively closed set with 1 S, the above construction of S−1A
can be reproduced for any A−module M to construct S−1M by defining ≡ on M × S as
(m, s) ≡ (m′s′) ⇐⇒ ∃t ∈ S : t(sm′ − ms′) = 0. Verification of the fact that ≡ is an
equivalence relation remains unchanged. If m

s denotes the equivalence class of (m, s) and
S−1M = M × S/ ≡, we can turn S−1M into an S−1A−module with the obvious addition
and multiplication.

If u : M → N is an A−module homomorphism, there is a natural S−1A−module ho-
momorphism S−1u : S−1M → S−1N which maps m

s 7→ u(m)
s . It is easy to see that

S−1(ν ◦ µ) = S−1(ν) ◦ S−1(µ).
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Example. S = A/P is multiplicatively closed ⇐⇒ P is prime: xy /∈ A/P, x, y ∈ A/P =⇒
xy ∈ P, x, y /∈ P , which contradicts P being prime. On the other hand, (x, y ∈ A/P =⇒
xy ∈ A/P ) ⇐⇒ (xy ∈ P =⇒ x ∈ P or y ∈ P ), so that P is prime. In this case, denote
the ring of fractions S−1A by AP .
We show that AP is a local ring, and its maximal ideal M is given by {as : a ∈ P}.
It is easy to see that this is an ideal in AP , by virtue of the fact that P is an ideal. On the
other hand, b

t /∈ M =⇒ b /∈ P =⇒ b ∈ S =⇒ t
b ∈ AP =⇒ b

t is a unit; so that for any
ideal I, I ̸⊂ M =⇒ I = R (since I will have a unit). The uniqueness of M follows from
the fact that it contains every non-unit in AP .
As an example of this, consider A = Z and P = (p) for some prime p. Then AP = {mn :
m,n ∈ Z, n /∈ P}.

The process of passing from A to AP is called localization at P . It is the algebraic analogue
of the geometric notion of concentrating attention near a point.

We can also take S to be the set of all non-zero-divisors in R. It is easy to see that this will
be multiplicatively closed; furthermore, the natural homomorphism r 7→ r

1 will be injective.
In this case, the action of S−1 is to turn all non-zero-divisors into units by supplying them
with inverses in the ring of fractions (for a non-zero-divisor s, its inverse in the ring of
fractions will be 1

s ). It is easy to see that in the localization of A to AP , what we have
done is added inverses to all elements not in P . We are ‘zooming in’ on P by getting rid of
obstructions from other points.

As another example, let A = k[t1, ...tn], where k is a field and {ti} are indeterminates. If P
is a prime ideal in A, then AP = {fg : f, g ∈ A, g /∈ P}, similar to the previous case, and let
V be the variety defined by P , V = {x = (x1, ...xn) ∈ kn : f(x) = 0, ∀f ∈ P}.
Once again, what we have done with localization is supplied inverses to elements not in P .
Now, g /∈ P =⇒ g ̸= 0 almost everywhere on V , because I(V (P )) =

√
P = P (the first

equality is Hilbert’s Nullstellensatz, and the second one is because P is prime).
Thus, AP can be identified with the ring of all rational functions on kn which are defined at
almost all points of V . AP is the local ring of kn along the variety V , and is the ‘prototype
of the local rings which arise in algebraic geometry.’

Theorem 3.4. If M ′ f−→ M
g−→ M ′′ is exact at M , S−1M ′ S−1f−−−→ S−1M

S−1g−−−→ S−1M ′′ is
exact at S−1M . In other words, the operation S−1 is exact.

Proof. g ◦ f = 0 =⇒ S−1g ◦ S−1f = S−1(g ◦ f) = S−1(0) = 0 =⇒ Im(S−1f) ⊆ Ker(S−1g).
On the other hand, let m

s ∈ ker(S−1g) =⇒ g(m)
s = 0 ∈ S−1M ′′ =⇒ ∃t ∈ S such that

g(tm) = tg(m) = 0 ∈ M ′′ =⇒ tm ∈ ker(g) =⇒ tm = f(m′),m′ ∈ M ′ =⇒ m
s = f(m′)

ts =

S−1(f)(m
′

st ) =⇒ m
s ∈ Im(S−1f) =⇒ ker(S−1g) ⊆ Im(S−1f), and we are done.

Corollary 3.4.1. For submodules N, P of M:

1. S−1(N + P ) = S−1N + S−1P

2. S−1(N ∩ P ) = S−1N ∩ S−1P

3. S−1(M/N) ∼= (S−1M)/(S−1N)
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Proof. We prove each statement in turn.

1. S−1(N + P ) = {n+ps : n ∈ N, p ∈ P} = {ns +
p
s : n ∈ N, p ∈ P} = S−1(N) + S−1(P )

2. For y ∈ N, z ∈ P, s, t ∈ S, let y
s = z

t ∈ S−1(N) ∩ S−1(P ) =⇒ u(ty − sz) = 0, u ∈ S =⇒
w = uty = usz ∈ N∩P =⇒ y

s = w
sty ∈ S−1(N∩P ) =⇒ S−1(N)∩S−1(P ) ⊆ S−1(N∩P ).

Conversely, y
s ∈ S−1(N ∩ P ) =⇒ y ∈ N ∩ P =⇒ y

s ∈ S−1(N), ys ∈ S−1(P ) =⇒ y
s ∈

S−1(N) ∩ S−1(P ) =⇒ S−1(N ∩ P ) ⊆ S−1(N) ∩ S−1(P ), and we are done.

3. Apply S−1 to the sequence 0 → N → M → M/N → 0. Since S−1M → S−1M/N is
surjective and its kernel equals the image of S−1N (which itself is isomorphic to S−1N ,
since the first function is injective), the result follows from the first isomorphism theorem.

Remark. The above results tell us that the operation S−1 on modules is exact, and commutes
with the formation of finite sums, finite intersections, and quotients.

Theorem 3.5. There exists a unique isomorphism between S−1A modules f : S−1A⊗AM →
S−1M,f((as )⊗m) = am

s , ∀a ∈ A,m ∈M, s ∈ S.

Proof. First, note that S−1A can be given A−module structure in the obvious manner, by
restriction of scalars. Furthermore, by defining a′

s′ (
a
s ⊗ m) = (aa

′

ss′ ⊗ m), i.e., by extension of
scalars, we can give S−1A⊗AM an S−1A-module structure.
Consider the mapping S−1A×M → S−1M, (as ,m) 7→ am

s . Since this is A-bilinear, it induces a
homomorphism f : S−1A⊗M → S−1M which will satisfy f((as )⊗m) = am

s .
It is clear that f is surjective, and its uniqueness follows from the universal property of the
tensor product.
Let

∑
i(
ai
si

⊗ mi) be an arbitrary element of S−1A ⊗M . Let s = Πisi ∈ S, ti = Πi ̸=jsi ∈ S.
Then,

∑
i(
ai
si

⊗mi) =
∑

i(
aiti
s ⊗mi) =

1
s ⊗

∑
i aitimi =⇒ every element in S−1A ⊗M is of

the form 1
s ⊗m. Now, f(1s ⊗m) = 0 =⇒ m

s = 0 =⇒ tm = 0, t ∈ S =⇒ 1
s ⊗m = t

st ⊗m =
1
st ⊗ tm = 1

st ⊗ 0 = 0 =⇒ ker(f) = 0 =⇒ f is injective, and we are done.

Corollary 3.5.1. S−1A is a flat A-module.

Proof. Suppose 0 →M ′ →M →M ′′ → 0 is exact. Consider 0 → S−1A⊗M ′ → S−1A⊗M →
S−1A ⊗M ′′ → 0. By 3.5, this is exact ⇐⇒ 0 → S−1M ′ → S−1M → S−1M ′′ → 0 is exact.
But this is exact by 3.4. Thus, the tensored sequence is exact, and we conclude from theorem
2.14 that S−1A is flat.

Corollary 3.5.2. There exists a unique isomorphism between S−1A modules f : S−1M⊗S−1A

S−1N → S−1(M ⊗A N), f(ms ⊗ n
t ) =

(m⊗n)
st .

In particular, if P is a prime ideal, then MP ⊗AP
NP

∼= (M ⊗A N)P as AP -modules.

Proof. S−1A⊗AM ∼= S−1M ⇐⇒ S−1M⊗S−1AS
−1N ∼= (S−1A⊗AM)⊗S−1AS

−1N . But from
the previous chapter, (S−1A⊗AM)⊗S−1AS

−1N ∼=M⊗A (S
−1A⊗S−1AS

−1N) ∼=M⊗AS
−1N =

M ⊗A (S−1A⊗A N) ∼= S−1A⊗A (M ⊗A N) ∼= S−1(M ⊗A N), and we are done.
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Definition. A property X of a ring or a module is said to be a local property if the following
is true: A (or M) has X ⇐⇒ AP (or MP ) has X for every prime ideal P of A.

Following are some examples of local properties.

Theorem 3.6. For an A-module M, M = 0 ⇐⇒ MP = 0 ⇐⇒ Mm = 0 for all prime
ideals P and maximal ideals m of A.

Proof. We only need to show Mm = 0∀m =⇒ M = 0. Suppose that Mm = 0∀m,M ̸= 0. Let
x ̸= 0 ∈M, I = Ann(x) ̸= R. Then, I is contained in some maximal ideal m. Now, x1 = 0 ∈Mm

(since Mm = 0 by assumption). In other words, ax = 0, a ∈ A −m. This is a contradiction,
since we had Ann(x) ⊆ m. We conclude that Mm = 0.

Theorem 3.7. Let ϕ : M → N be an A-module homomorphism. Then, ϕ is injective
(surjective) ⇐⇒ ϕP : MP → NP is injective (surjective) ⇐⇒ ϕm : Mm → Nm is
injective (surjective) for all prime ideals P and maximal ideals m of A. Note that ϕP ≡
(A− P )−1M(ϕ).

Proof. We prove each implication.

1. 1 =⇒ 2 : If ϕ is injective, 0 →M → N is exact ⇐⇒ 0 →MP → NP is exact ⇐⇒ ϕP is
injective. If ϕ is surjective, M → N → 0 is exact ⇐⇒ MP → NP → 0 is exact ⇐⇒ ϕP
is surjective.

2. 2 =⇒ 3 in both cases because every maximal ideal is prime.

3. 3 =⇒ 1 : Let M ′ = Ker(ϕ) =⇒ 0 → M ′ → M → N is exact ⇐⇒ 0 → M ′
m →

Mm → Nm is exact =⇒ M ′
m

∼= Ker(ϕm) = 0 (since ϕm is injective) =⇒ M ′ = 0 (by
the previous theorem) =⇒ ϕ is injective.
On the other hand, if we let N ′ = N/Im(ϕ), then M → N → N ′ → 0 is exact ⇐⇒
Mm → Nm → N ′

m → 0 is exact =⇒ N ′
m = 0 (since ϕm is surjective) =⇒ N ′ = 0 =⇒ ϕ

is surjective.

Theorem 3.8. Let M be an A-module. Then M is a flat A-module ⇐⇒ MP is a flat
AP -module ⇐⇒ Mm is a flat Am-module for all prime ideals P and maximal ideals m of
A.

Proof. We prove each implication.

1. M is flat =⇒ AP ⊗A M is flat as an AP -module (by corollary 2.15.1) =⇒ MP is flat
(by theorem 3.5).

2. 2 =⇒ 3 is obvious.

3. ϕ : N → P is injective =⇒ ϕm : Nm → Pm is injective (by theorem 3.7) =⇒ ϕm ⊗ 1 :
Nm ⊗Am Mm → Pm ⊗Am Mm is injective (by theorem 2.14) =⇒ ϕm ⊗ 1 : (N ⊗AM)m →
(P ⊗AM)m is injective (by corollary 3.5.2) =⇒ ϕ⊗ 1 : N ⊗AM → P ⊗AM is injective
(by theorem 3.5). Thus, by theorem 2.14, M is flat.
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To conclude:

• Being the 0-module is a local property.

• Being injective/surjective is a local property.

• Being flat is a local property.

Theorem 3.9. Let A be a ring, S be a multiplicatively closed subset of A, f : A→ S−1A be
the natural homomorphism f(a) = a

1 , C be the set of contracted ideals in A, and E be the set
of extended ideals in S−1A. Ie will be S−1I (considering I as a module on the right-hand
side). The following holds:

1. Every ideal in S−1A is an extended ideal.

2. If I is an ideal in A, then Iec =
⋃
s∈S(I : (s)).

3. Ie = S−1A ⇐⇒ I ∩ S ̸= ∅.

4. I ∈ C ⇐⇒ no element of S is a zero divisor in A/I.

5. The prime ideals of S−1A are in one-one correspondence with the prime ideals of A
which don’t meet S (that is, which have empty intersection with S).

6. The operation S−1 on ideals commutes with the formation of radicals, (finite) products,
sums and intersections.

Proof. 1. Let J ⊆ S−1A be an ideal, and x
s ∈ J =⇒ x

1 ∈ J =⇒ x ∈ Jc =⇒ x
s ∈

Jce =⇒ J ⊆ Jce. But we know, in any case, from theorem 1.13 that Jce ⊆ J . Thus,
J = Jce =⇒ J ∈ E by the same theorem, and we are done.

2. x ∈ Iec = (S−1I)c ⇐⇒ x
1 = a

s , a ∈ I, s ∈ S ⇐⇒ (xs− a)t = 0, t ∈ S ⇐⇒ xst ∈ I ⇐⇒
x ∈

⋃
s∈S(I : (s)) =⇒ Iec ⊆

⋃
s∈S(I : (s)).

On the other hand, x ∈
⋃
s∈S(I : (s)) =⇒ xs ∈ I =⇒ x

1
s
1 ∈ Ie =⇒ x

1 ∈ Ie =⇒ x ∈
Iec, and we are done.

3. I ∩ S ̸= ∅ =⇒ s ∈ S ∩ I =⇒ s
1 ∈ Ie =⇒ s

1
1
s = 1

1 ∈ Ie =⇒ Ie = S−1A.
On the other hand, Ie = S−1A =⇒ Iec =

⋃
s∈S(I : (s)) = (S−1A)c = A. Therefore,

x ∈ A =⇒ x = ist, i ∈ I, s ∈ S, t ∈ A. In particular, x ∈ S =⇒ x = ist for some i, s, t.
Then, xs ∈ S, xs ∈ I =⇒ I ∩ S ̸= ∅.

4. I ∈ C ⇐⇒ Iec = I ⇐⇒ (∃s ∈ S : sx ∈ I =⇒ x ∈ I) (from (2)) ⇐⇒ s ∈ S is not a
zero divisor in A/I for any s.

5. We know that if J is prime in S−1A, then Jc is prime in A. On the other hand, suppose
I is prime in A. Then, A/I is an integral domain. Let S̄ be the image of S in A/I under
the quotient map. Then from corollary 3.4.1, (S−1A/S−1I) ∼= S̄−1(A/I), which is also an
integral domain if I ∩ S = ∅ (since it will be contained in the field of fractions of A/I;
if I ∩ S ̸= ∅, it will be the zero field); and so from theorem 1.3, S−1I is prime. This
gives us the correspondence we need. (Observe that it does not make sense, here, to write
S−1(A/I).)
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6. For finite sums, it follows from the fact that, in general, (I1 + I2)
e = Bf(I1 + I2) =

Bf(I1) +Bf(I2) = Ie1 + Ie2 .
For finite products, it follows from the fact that, in general, (I1I2)

e = Bf(I1I2) =
Bf(I1)Bf(I2) = Ie1I

e
2 .

For finite intersections, it follows from corollary 3.14.
For radical formation: x ∈ r(I)e =⇒ x =

∑
i bif(xi). For some high enough power

n, xn =
∑

i b
′
if(x

n
i ) where each xni ∈ I =⇒ xn ∈ Ie =⇒ x ∈ r(Ie) =⇒ r(I)e ⊆ r(Ie),

so that S−1r(I) ⊆ r(S−1I).
On the other hand, suppose x

s ∈ r(S−1I) =⇒ xn

sn ∈ S−1I =⇒ xn

sn = a
t for some

a ∈ I, t ∈ S. Therefore, utxn = uasn for some u ∈ S. Multiplying both sides by
(ut)n−1, we can conclude that (utx)n ∈ I =⇒ utx ∈ r(I). Also, uts ∈ S. Therefore,
utx
uts = x

s ∈ S−1r(I) =⇒ r(S−1I) ⊆ S−1r(I), and we are done.

Remark. Recall that in the proof of theorem 1.7, we had to show that if x ∈ A is not nilpotent,
there exists a prime ideal which does not contain x. There is a much swifter argument we can
employ with our new tools.
Consider S = (xn)n≥0. By assumption, 0 /∈ S =⇒ S−1A = Af ̸= 0. By theorem 1.4, Af has a
maximal ideal, whose contraction in A will be a prime ideal P which does not meet S (by the
above theorem); so that x /∈ P .

Corollary 3.9.1. If N is the nilradical of A, then S−1N is the nilradical of S−1A.

Proof. Follows from theorem 3.9 (5) in conjunction with corollary 3.4.1 (2).

Corollary 3.9.2. If P is a prime ideal of A, the prime ideals of the local ring AP are in
one-one correspondence with the prime ideals of A contained in P.

Proof. Take S = A− P in theorem 3.9 (5).

Discussion. Thus, the passage from A to AP eliminates all prime ideals except the ones
contained in P . On the other hand, the passage from A to A/P eliminates all prime ideals
except the ones containing P (theorem 1.1).
If P,Q are prime ideals with Q ⊆ P , then quotienting by Q and localizing at P (in either
order, since we know they commute) focuses our attention to those prime ideals which lie
between P and Q.
In particular, if Q = P , this operation yields a field, called the residue field at P. This can
also be seen either as the field of fractions of the integral domain A/P , or the residue field
of the local ring AP .

Theorem 3.10. Let M be a finitely generated A-module, S a multiplicatively closed subset
of A. Then S−1(Ann(M)) = Ann(S−1(M)).

Proof. First, suppose M is generated by a single element. Then, M ∼= A/Ann(M) =⇒
S−1M ∼= (S−1A)/(S−1Ann(M)) =⇒ Ann(S−1M) = S−1Ann(M).
Next, we show that Ann(M+N) = Ann(M)∩Ann(N) : It is obvious that Ann(M)∩Ann(N) ⊆
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Ann(M + N). On the other hand, x ∈ Ann(M + N) =⇒ x(m + n) = 0∀m,n ∈ M,N =⇒
x(m + 0) = xm = 0∀m,xn = 0∀n =⇒ x ∈ Ann(M) ∩ Ann(N) =⇒ Ann(M + N) ⊆
Ann(M) ∩Ann(N), and we are done.
Now, suppose the proposition is true of M,N . Then, S−1Ann(M + N) = S−1(Ann(M) ∩
Ann(N)) = S−1Ann(M) ∩ S−1Ann(N) = Ann(S−1M) ∩ Ann(S−1N) (by hypothesis) =
Ann(S−1M + S−1N) = Ann(S−1(M +N)). Thus, the proposition will be true of any finitely
generated module.

Corollary 3.10.1. If N, P are submodules of M and P is finitely generated, then S−1(N :
P ) = (S−1N : S−1P ).

Proof. First, we show that (N : P ) = Ann((N + P )/N) : xP ⊆ N ⇐⇒ x(N + P ) ⊆ N ⇐⇒
x((N + P )/N) = 0.
Then, S−1(N : P ) = S−1Ann((N+P )/N) = Ann(S−1(N+P )/N) = {as ∈ S−1M : (as )(

p+N
s ) =

0} ⇐⇒ (as )(
p
s ) ∈ S−1N ⇐⇒ a

s ∈ (S−1N : S−1P ), and we are done.

Theorem 3.11. Let f : A → B be a ring homomorphism and P be a prime ideal of A.
Then P is the contraction of a prime ideal of B ⇐⇒ P ec = P .

Proof. First, suppose P is the contraction of a prime ideal; i.e., P = Qc. Then, P ec = Qcec =
Qc = P (by theorem 1.13).
On the other hand, suppose P ec = P . Let S be the image of A − P in B. Note that S will
be multiplicatively closed. Now, A − P = A − P ec = A − f−1(P e) = f−1(B − P e). Then,
x ∈ f(A− P ) = S =⇒ x ∈ f ◦ (f−1(B − P e)) =⇒ x ∈ B − P e =⇒ x /∈ P e =⇒ P e ∩ S = ∅.
By theorem 3.9, the extension of P e in S−1B is a proper ideal; it follows that it is contained
in a maximal ideal m of S−1B. Let Q = mc =⇒ Q ⊆ B is prime and Q ∩ S = ∅ (since m is
prime). Furthermore, I ⊆ Iec =⇒ P e ⊆ Q =⇒ P ec = P ⊆ Qc.
On the other hand, x ∈ Qc − P =⇒ f(x) ∈ Q, f(x) ∈ f(A− P ) = S, contradicting Q ∩ S = ∅.
Thus, Qc ⊆ P , and we are done.

Exercises

Presheaves and sheaves:

Let A be a ring and X = Spec(A), and for f ∈ A, let Xf = V (f)C .

• {Xf}f∈A form a basis for Spec(A):
For any point p ∈ X, consider an element of the ring which is not in the corresponding
prime ideal, f /∈ p. Then, we will have p ∈ Xf , since p /∈ V (f). Thus, the collection covers
X.
Next, let Xf , Xg be basic open sets corresponding to f, g ∈ A, and suppose p ∈ Xf ∩
Xg =⇒ p ∈ V (f)C , p ∈ V (g)C =⇒ f /∈ p, g /∈ p =⇒ fg /∈ p (since p is prime)
=⇒ p /∈ V (fg) =⇒ p ∈ Xfg.
This proves that the collection forms a basis for the Zariski topology.

For f ∈ A, let S = {fn}n≥0, and S−1A = Af . Finally, for any basic open set U = Xf , define
the ring A(U) = Af . We need to check that this is well-defined.
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• A(U) depends only on U and not on f :
Note that Xf ⊆ Xg ⇐⇒ V (g) ⊆ V (f) ⇐⇒ V (r(g)) ⊆ V (r(f)) ⇐⇒ r((f)) ⊆ r((g)).
The first step is clear from the fact that complementation reverses inclusions. The last
two steps follow from the fact that the radical of an ideal is the intersection of the prime
ideals which contain it.
Now, suppose Xf = Xg. It follows that r((f)) = r((g)), so that gn = uf, fm = u′g for
some u, u′ ∈ A,n,m ∈ N.
Then, consider ϕf : A → Af , ϕf (a) = a

1 , and let S = {gl}l≥0, so that S−1A = Ag. For
any gl ∈ S, ϕf (g

l) is a unit in Af with inverse u′l

fml . Next ϕf (gl) = 0 =⇒ glfk = 0, k ∈ N.
Thirdly, any element in Af is of the form a

fk
= auk

gnk = ϕf (au
k)ϕ−1

f (gnk), gnk ∈ S.
By corollary 3.2 (universal property of rings of fractions), it follows that Af ∼= Ag. We
conclude that A(U) is well-defined.

Note that X = V ((1))C = V (1)C = X1. For U = X,A(X) = A(X1) = A1 = S−1A, where
S = {1}. In this case, it is clear that the homomorphism f : A → A1, f(x) = x

1 is also an
isomorphism, so that A(X) ∼= A.

We shall define the restriction homomorphism ρ : A(U) :→ A(U ′) as follows: Let U ′ = Xg ⊆
U = Xf . Then, r((g)) ⊆ r((f)), and it follows that ∃n ∈ N such that gn = uf . We finally define
ρ( a

fm ) = aum

gmn . Sometimes, ρ(x) is denoted by x|U ′ , by analogy with restriction of functions.
It remains to be shown that ρ is well-defined.

• a
fm = b

fk
=⇒ f q(afk− bfm) = 0, then gnq(aumgnk− bukgmn) = f qum+k+q(afk− bfm) =

0 =⇒ aum

gmn = buk

gkn
=⇒ ρ( a

fm ) = ρ( b
fk
).

• ρ depends only on U and U ′:
Consider the following diagram constituted by various canonical isomorphisms, where U =
Xf = Xf ′ , U

′ = Xg = Xg′ , so that A(U) = Af ∼= Af ′ , A(U
′) = Ag ∼= Ag′ . Also note that

we will have f ′n = uf, g′m = vg for some u, v ∈ A,n,m ∈ N. Also write gl = bf, g′h = cf ′.

Af Ag

A

Af ′ Ag′

ρ

ψff ′ ψgg′

ϕf ϕg

ϕg′

ϕf ′
ρ′

Here, ϕf , ϕg, etc. are the natural homomorphism between a ring and its fraction ring.
ψff ′ , ψgg′ are the isomorphisms induced by the universal property of fraction rings, so that
ψff ′(

a
fk
) = ϕf ′(au

k)ϕ−1
f ′ (f

′nk) = auk

f ′nk , and likewise for ψgg′ .
It is easy to check that each of the triangles commute.
We have defined ρ′( a

f ′m ) = au′m

g′mn . If we show that the outer square commutes, our job is
done.
Using the fact that each of the triangles commute, we write ρ′ ◦ ϕf ′ = ϕg′ = ψgg′ ◦ ϕg =
ψgg′ ◦ ρ ◦ ϕf = ψgg′ ◦ ρ ◦ ψ−1

ff ′ ◦ ϕf ′ .
Since ϕf ′ is surjective, we conclude that ρ′ = ψgg′ ◦ ρψ−1

ff ′ ; in other words, the square
commutes.

The assignment of rings A(U) to each basic open set U of X, along with the restriction homo-
morphisms ρ, satisfy the following conditions:

1. U = U ′ =⇒ ρ = IdA(U).
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2. If U ′′ ⊆ U ′ ⊆ U are basic open sets, the following diagrams (where the arrows are the
restriction homomorphisms) commutes:

A(U) A(U ′′)

A(U ′)

Such an assignment of rings, with restriction homomorphisms satisfying the above two condi-
tions, constitutes a presheaf of rings on the basis {Xf}f∈A. The following also holds:

• Let x ∈ X (so that x is some prime ideal P ⊆ A). Then, AP ∼= lim−−→
x∈U

A(U) := Ax.

The limit being taken here is the direct limit of a family of rings (for each ring can be
regarded as a Z-module).
To be clear, let Ix = {U : U is a basic open set containing x}, and for Xf , Xg ∈ Ix, define
an order Xf ≤ Xg := Xg ⊆ Xf . For any Xf ≤ Xg, Xfg ⊆ Xf , Xg =⇒ Xfg ≥ Xf , Xg.
Therefore, I is a directed set.
Our family of rings is A(U)U∈I ≡ A(U)x∈U . Furthermore, the restriction homomorphisms
ρ : A(U) → A(U ′) satisfy the two requirements for a direct system (by iii and iv).
Thus, M=(A(U), ρUU ′) forms the direct system of Z-modules over which the limit is taken.

This states that the stalk of the presheaf at x ∈ X,Ax, is the corresponding local ring AP . Con-
ceptually speaking, the stalk captures the properties of the sheaf “around” that point. (Notice
how, in the direct limit, we move towards rings associated with smaller and smaller neighbour-
hoods around the point.)

Discussion. Let (Ui)i∈I be a covering of X by basic open sets, and for each i ∈ I let
si ∈ A(Ui) be such that for each i, j ∈ I, ρ(si) = ρ′(sj) ∈ A(Ui ∩ Uj), where ρ : A(Ui) →
A(Ui ∩ Uj) and ρ′ : A(Uj) → A(Ui ∩ Uj).

Then, there exists a unique s ∈ A(X) = A whose image in A(Ui) is si, ∀i ∈ I. That is, for
each ρi : A→ A(Ui), ρi(s) = si.

This fact implies that the presheaf is a sheaf.

The existence and uniqueness requirements of s are called gluing and locality, respectively.

Given two rings, if the restriction (to their intersection) of a pair of elements from each ring
agrees, we may call the elements compatible. In a sheaf, we can take a collection of pairwise
compatible elements and glue them all together into a unique element s.

Alternatively, locality says that if two elements in A(X) agree on each restriction (given a
covering), they must be identical; and gluing says that if there is a collection of elements
such that each pair agrees on their domain of overlap (si|Ui∩Uj = sj |Ui∩Uj ), then there is an
element s ∈ A(X) whose restriction on Ui is precisely that element.
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Primary decomposition

Definition. An ideal I ⊆ R is primary if I ̸= R and xy ∈ I =⇒ x ∈ I or yn ∈ I for some
n ∈ N.
I is primary ⇐⇒ R/I ̸= 0 and every zero divisor in R/I is nilpotent.
I is primary if xy ∈ I =⇒ x ∈ I or y ∈ I or xn and yn ∈ I.

Remark. If a prime ideal in a ring is viewed as a generalization of a prime number, a primary
ideal is the corresponding generalization of a power of a prime number.

Theorem 4.1. Let I be a primary ideal in R. Then, r(I) is the smallest prime ideal
containing I.

Proof. We know that the radical of an ideal is the intersection of the prime ideals containing it.
Therefore, it suffices to show that r(I) is prime.
Let xy ∈ r(I) =⇒ (xy)m ∈ I =⇒ xm ∈ I or ymn ∈ I =⇒ x ∈ r(I) or y ∈ r(I) =⇒ r(I) is
prime.

Remark. If the radical of a primary ideal Q is the prime ideal P , then Q is said to be P-primary.

Example. Consider the three following examples.

• In Z, the primary ideals are precisely (0) and (pn), where p is prime.
ab ∈ (pn) =⇒ pn | ab. pn ∤ a =⇒ p | b =⇒ pn | bn =⇒ bn ∈ (pn) (this can be
easily proven using the fundamental theorem of arithmetic), so that (pn) is primary.
On the other hand, if r(I) ̸= 0 is prime, then I must be primary. For suppose I =
(pnqm) =⇒ I ⊆ (p), (q). Then, r(I) ⊆ (p)∩(q) =⇒ pq ∈ r(I) but p /∈ r(I), q /∈ r(I),
a contradiction.

• However, not all primary ideals are prime powers.
Let R = k[x, y] and Q = (x, y2). Then R/Q ∼= k[y]/(y2) ̸= 0. Furthermore, zero
divisors in R/Q will all be multiples of y; therefore, they will be nilpotent. Thus, Q
is primary.
Now, r(Q) = P = (x, y), so that P 2 ⊂ Q ⊂ P , where the inclusions are strict. We
thus see that Q is not a prime power. (If Q = P ′n for some other prime ideal, then
r(Q) = P ′ =⇒ P ′ = P , which is then a contradiction.)

• Conversely, not all prime powers are primary ideals.
Let R = k[x, y, z]/(xy − z2) and P = (x̄, z̄), where x̄ is the image of x in R. Now,
R/P ∼= k[x, y, z]/(x, z, xy − z2) ∼= k[y], which is an integral domain; thus, P is prime.
However, P 2 is not primary: x̄ȳ = z̄2 ∈ P 2, but x̄ /∈ P 2, ȳ /∈ r(P 2) = P .

Theorem 4.2. If r(I) is maximal, I is primary.

Proof. Let r(I) = M . The image of M in R/I is the nilradical of R/I. It is also a maximal
ideal of R/I. Since the nilradical is the intersection of all prime ideals of R/I, we conclude that
R/I has only one prime ideal, which is the image of M .
Now, if an element is in this image, it is nilpotent; if not, it is a unit (recall corollary 1.4.2). If an
element is a zero divisor, it cannot be a unit. Therefore, all zero divisors in R/I are nilpotent,
and we conclude that I is primary.
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Corollary 4.2.1. The powers of a maximal ideal M are M-primary.

Proof. Follows from the fact that r(Pn) = P for a prime ideal.

Lemma 4.3. If {Qi}ni=1 are P-primary, then Q =
⋂n
i=1Qi is P-primary.

Proof. r(Q) = r(
⋂n
i=1Qi) =

⋂n
i=1 r(Qi) = P . (It is easy to check that r(A∩B) = r(A)∩ r(B).)

Next, let xy ∈ Q, y /∈ Q. Then, for some i, xy ∈ Qi, y /∈ Qi =⇒ xn ∈ Qi =⇒ x ∈ P =⇒ xn ∈
Q.

Lemma 4.4. Let Q be a P-primary ideal in R and x ∈ R. Then:

1. x ∈ Q =⇒ (Q : x) = R

2. x /∈ Q =⇒ (Q : x) is P-primary

3. x /∈ P =⇒ (Q : x) = Q.

Proof. (Q : x) = {a ∈ R : ax ∈ Q}.

1. Since x ∈ Q, this will be true for all a ∈ R.

2. y ∈ (Q : x) =⇒ xy ∈ Q =⇒ yn ∈ Q =⇒ y ∈ P , since x /∈ Q. Thus, Q ⊆ (Q : x) ⊆
P =⇒ r(Q : x) = P .
Also suppose, yz ∈ (Q : x), y /∈ P . Then xyz ∈ Q =⇒ xz ∈ Q =⇒ z ∈ (Q : x).

3. xn /∈ Q, ax ∈ Q =⇒ a ∈ Q. Thus, (Q : x) = Q.

Discussion. A primary decomposition of an ideal I ⊆ R is an expression of I as a finite
intersection of primary ideals:

I =
n⋂
i=1

Qi

In general, such a primary decomposition need not exist for an ideal. If it does, we call the
ideal decomposable. There are special kinds of rings called Noetherian rings in which every
ideal is decomposable.

If, furthermore,

• The r(Qi) are all distinct

•
⋂
j ̸=iQj ̸⊆ Qi

then, the primary decomposition is said to be minimal/irredundant/reduced/normal.

Given a primary decomposition, we can use lemma 4.3 to combine ideals as required and
achieve the first condition. If we then drop the superfluous terms to satisfy the second
condition, we can turn any given primary decomposition into a minimal one.
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Theorem 4.5 (First Uniqueness Theorem). Let I be a decomposable ideal and I =
⋂n
i=1Qi

be a minimal primary decomposition; and let Pi = r(Qi).
Let S = {r(I : x) | x ∈ R}. Then, {Pi} are precisely the prime ideals which occur in S.
Thus, they are independent of the particular decomposition of I.

Proof. It is easy to check that
⋂
(Ii : x) = (

⋂
Ii : x). Then, (I : x) = (

⋂
Qi : x) =

⋂
(Qi :

x) =⇒ r(I : x) =
⋂n
i=1 r(Qi : x) =

⋂
x/∈Qj

Pj , by lemma 4.4 (1), (2). Now, suppose r(I : x) is
prime. Then, by theorem 1.11, r(I : x) = Pj for some j.
Conversely, for each i we have some xi /∈ Qi, xi ∈

⋂
j ̸=iQj , since the decomposition is minimal.

Then, by the previous equation, we have r(I : xi) = Pi.

Remark. This is equivalent to saying that {Pi} are precisely the prime ideals which are radicals
of annihilators of elements in the module R/I.

Example. Let R = k[x, y], I = (x2, xy). Let P1 = (x), P2 = (x, y), P3 = (x2, y) Note that
P2 will be a maximal ideal (Nullstellensatz). Therefore, P 2

2 is a primary ideal. Since k is a
field and x is an irreducible polynomial, P1 is a prime (and thus primary) ideal. I itself is
not primary, since ȳ is a zero-divisor in R/I but not nilpotent. Finally, P3 is primary since
if āp̄ = 0, p̄ ̸= 0 in R/P3 then a(x, y)p(x, y) ∈ P3 =⇒ ā = 0 by a having a factor of y, or a
has a factor of x, making ā nilpotent.

I = P1 ∩ P 2
2 = P1 ∩ P3 and r(I) = P1 ∩ P2 = P1.

Note, first of all, that the primary components are not independent of the decomposition;
we have given two distinct minimal primary decompositions above.

The prime ideals {Pi} given by the radicals of the primary ideals in the decomposition are
said to belong to I, or be associated with I, and I will be primary iff it has exactly one
associated prime ideal. The minimal elements of {P1, ..., Pn} are called the minimal or
isolated prime ideals belonging to I, and the others are called embedded prime ideals. In
the above example, P1 is minimal and P2 is embedded.

There is some geometric context behind the names ‘isolated’ and ‘embedded’. Let R =
k[x1, ...xn], where k is a field, and I ⊆ R be an ideal. I will give rise to a variety X ⊆ kn

(the set of points at which all the polynomials in I vanish).

The minimal primes belonging to I correspond to the irreducible components of X; that is,
a subvariety of X which cannot be written as the union of two varieties.

The embedded primes belonging to I correspond to subvarieties of the above; that is, to
varieties embedded in the irreducible components. In the above example, the embedded ideal
(x, y) corresponds to the origin (0, 0). The irreducible component as well as the variety are
both defined by the line x = 0.

Theorem 4.6. Let I be a decomposable ideal. Then any prime ideal I ⊆ P contains a
minimal prime ideal belonging to I.

Proof. Let
⋂n
i=1Qi = I ⊆ P . Then, r(

⋂
Qi) =

⋂
r(Qi) =

⋂
Pi ⊆ r(P ) = P . By theorem 1.11,

Pi ⊆ P for some i, so that P contains some minimal prime ideal of I.
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Corollary 4.6.1. The minimal prime ideals of I are the minimal elements in the set of all
prime ideals containing I.

Proof. I =
⋂n
i=1Qi ⊆

⋂n
i=1 Pi =⇒ I ⊆ Pi for all i, which means I is contained in each of its

minimal prime ideals. The conclusion follows from this and theorem 4.6.

Remark. It is easy to see that the set of nilpotent elements N of a ring, being the intersection
of all its prime ideals, will be the intersection of all the minimal primes belonging to 0 (which is
another way of saying the intersection of the smallest prime ideals of a ring).

Theorem 4.7. Let I be a decomposable ideal with I =
⋂n
i=1Qi, Pi = r(Qi). Then

n⋃
i=1

Pi = {x ∈ R : (I : x) ̸= I}

In particular, if the zero ideal is decomposable, then the set of zero-divisors of R, D, equals
the union of the prime ideals belonging to 0.

Proof. The primary decomposition of 0̄ ∈ R/I will be 0̄ =
⋂n
i=1 Q̄i. We first show that the set

of zero divisors of R/I equals the union of the prime ideals belonging to 0̄.
We know D =

⋃
x ̸=0̄ r(0̄ : x) from theorem 1.12 (2) (here, x ∈ R/I). Also, we have seen that

r(0̄ : x) =
⋂
x/∈Q̄j

P̄j ⊆ P̄j for some j. Therefore, D ⊆
⋃n
i=1 P̄i. But since we also know from

theorem 4.5 that each P̄i is of the form r(0̄ : x) for some x ∈ R/I, we have
⋃n
i=1 P̄i ⊆ D.

So, we have shown that
⋃n
i=1 P̄i = {x ∈ R/I : (0̄ : x) ̸= 0̄}. It follows that

⋃n
i=1 Pi =

⋃n
i=1(Pi +

I) =
⋃n
i=1 π

−1(P̄i) = π−1(
⋃n
i=1 P̄i) = π−1({x ∈ R/I : (0̄ : x) ̸= 0̄}) = {x ∈ R : (I : x) ̸= I}, and

we are done.

Theorem 4.8. Let S be a multiplicatively closed subset of A and Q be a P-primary ideal.

1. S ∩ P ̸= ∅ =⇒ S−1Q = S−1A

2. S ∩ P = ∅ =⇒ S−1Q is S−1P -primary and its contraction in A is Q.

Proof. We prove each part in turn.

1. Suppose s ∈ S ∩ P . Then, sn ∈ S ∩Q for some n ∈ N. Thus, sn

1 ∈ S−1Q. Since this is a
unit in S−1A, the conclusion follows.

2. Suppose S∩P = ∅. Then, s ∈ S, as ∈ Q =⇒ a ∈ Q, since s ∈ S =⇒ s /∈ P =⇒ sn /∈ Q.
In other words,

⋃
s∈S(Q : s) = Q. Now, by theorem 3.9 (2),

⋃
s∈S(Q : s) = Qec =⇒ Q =

Qec.
It remains to be shown that S−1Q = Qe is S−1P -primary. But also by theorem 3.9 (6),
r(Qe) = r(S−1Q) = S−1r(Q) = S−1P . Finally, suppose xy

st ∈ S−1Q =⇒ xy
st = z

u , z ∈
Q, u ∈ S. It suffices to show that either x ∈ Q or yn ∈ Q. Now, the above tells us that
xyuv ∈ Q for some v ∈ S. Therefore, either xuv ∈ Q or yn ∈ Q. But xuv ∈ Q =⇒ x ∈ Q
(by the above), since uv ∈ S. Hence, proved.
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Remark. Note that the contraction of a primary ideal will be a primary ideal. It follows that
the primary ideals of S−1A are in one-one correspondence with the primary ideals of A whose
radical doesn’t meet S.

Henceforth, we shall denote the contraction of S−1I = Ie in R as simply S(I).

Theorem 4.9. Let S be a multiplicatively closed subset of A, I be a decomposable ideal with
I =

⋂n
i=1Qi being a minimal primary decomposition, and Pi = r(Qi). Number the Qi so

that S meets each of {Pm+1, ..., Pn} but none of {P1, ..., Pm}. Then,

S−1I =

m⋂
i=1

S−1Qi, S(I) =

m⋂
i=1

Qi

are minimal primary decompositions.

Proof. S−1I =
⋂n
i=1 S

−1Qi (by 3.9) =
⋂m
i=1 S

−1Qi, wherein S−1Qi is S−1Pi-primary for i =
1, ...,m. (by 4.8 (1) & (2) respectively). Since the Pi are distinct, so are the S−1Pi. The second
condition for minimality follows from the fact that I ⊊ J =⇒ S−1I ⊊ S−1J . Thus, the
primary decomposition is also minimal.
Contracting both sides, S(I) = (S−1I)c =

⋂m
i=1(S

−1Qi)
c =

⋂m
i=1Qi (by 4.8 (2)).

Definition. A set Σ of prime ideals belonging to I are said to be isolated if it satisfies the
following condition:
If P ′ is a prime ideal belonging to I and P ′ ⊆ P for some P ∈ Σ, then P ′ ∈ Σ.

Remark. There is a slight ambiguity in the text. We say that P is a minimal prime, but that
{P} is an isolated set of primes (for a minimal prime P ): To be isolated is a property of a set
of primes, not of a prime ideal itself.

Theorem 4.10 (Second Uniqueness Theorem). Let I =
⋂n
i=1Qi be a minimal primary

decomposition of I, and let {Pi1 , ..., Pim} be an isolated set of prime ideals belonging to I.
Then Qi1 ∩ ... ∩Qim is independent of the decomposition.

Proof. Let S = R − (Pi1 ∪ Pi2 ... ∪ Pim). Clearly, S does not meet Pi1 , ..., Pim . Furthermore,
S will meet each of the prime ideals belonging to I which are not in this set: For suppose
P /∈ {Pi1 , ..., Pim} and P ∩S = ∅ =⇒ P ⊆ Pi1 ∪ ...∪Pim =⇒ P ⊆ Pik for some k (by theorem
1.11), which contradicts the definition of an isolated set.
Thus, from 4.9, Qi1 ∩ ... ∩Qim = S(I), from which independence follows.

Corollary 4.10.1. The primary components corresponding to minimal prime ideals in a
decomposition are uniquely determined by I.

Remark. The embedded primary components are not, in general, uniquely determined by I. In
fact, if R is a Noetherian ring, there are infinitely many choices for each embedded component.
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