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Abstract

Quantization is the attempt to describe a mathematically rigorous mode of approaching a

quantum theory corresponding to a given classical theory. It is a problematic which lies at

the crossroads of mathematics and physics, requiring both the unyielding rigour of the

former and heuristic intuition from the latter. In this report, after establishing some

geometric background, we discuss in some detail two ways of tackling this problem:

Geometric quantization and Berezin quantization.



1
Introduction

Given a classical system, is there a natural way to map it to a corresponding quantum

mechanical system?

This is the motivating question behind the mathematical theory of quantization. But

before we proceed, everything in that sentence clamours for clarification.

• Classical system: Canonically, a particle in a classical system is described by

position-momentum coordinates and a Lagrangian function; these, together with a

set of well-established dynamical laws (codified by the Euler-Lagrange equations),

allow one to predict the position-momentum coordinates of the particle at any point

of time in the future.

Generalizing this from (R6)n takes us to a smooth manifold, with some additional

structure encoding dynamics. The right kind of additional structure turns out to be

a closed, non-degenerate di↵erential two-form known as a symplectic form; and

classical observables are understood as smooth functions f : M ! R.

The study of manifolds with this additional structure is known as symplectic

geometry. This having turned out to be the natural mathematical language for

describing classical systems, we will begin with a brief overview of the same.

• Quantum system: Shortly after the inception of quantum theory, it was

understood that quantum states are best understood as vectors (or, rather, rays) in

a Hilbert space, and observables as Hermitian operators acting on this Hilbert space.

This, therefore, is what yields a mathematical ‘home’ for quantum theory.

7
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• Natural: There are certain heuristic requirements one would like such a map to

obey. A set of such requirements was first articulated by Dirac [5]. We will discuss

these quantization conditions (and others) in greater detail in chapter 3; and as we

will see, these impose some serious constraints on the possibility of quantization

maps.

• Map: Optimistically, one would imagine the map to, perhaps, be a functor

F : Symp ! Hilb, where Symp is the category of symplectic manifolds (with

morphisms being symplectomorphisms), and Hilb is the category of Hilbert spaces

(with morphisms being Hermitian operators).

Work towards solving formulating and sovling a category-theoretic version of the

quantization problem was initiated by A. Weinstein [1]. It remains an open area of

research, with much to be understood.

In the second chapter, after our discussion on symplectic geometry, we will establish some

more preliminary notions required to understand the theory of geometric quantization. We

discuss some basic structures on vector bundles and complex manifolds, and include a

detour into the notion of a coadjoint orbit.

We discuss the theory proper in the third chapter. After first establishing the basic

prequantization map, we go further and introduce the scheme of polarizations in order to

make the Hilbert space suitably irreducible.

After this, two addendums to the basic theory are considered:

• Obstructions: A number of no-go theorems established by M. Gotay et. al. [8],

proving the impossibility of quantization maps for certain spaces, shall be discussed.

These also pave the way for some interesting questions to be formulated, which we

shall state.

• Quantization of states: Traditionally, the theory of geometric quantization dealt

only with the quantization of observables by taking smooth maps to Hermitian

operators. However, A. Odzijewicz [16] extended this setup to the quantization of

states as well. We will briefly go over this extension.

In the fourth chapter, we discuss an alternative scheme for quantization; namely,

deformation quantization, as initiated by M. Flato et. al. [2]. We will begin by discussing

an important deformation map on the Poisson algebra of classical observables, first

established by Fedosov [6], move onto another star product defined by Berezin [3], and end

by tying this back concretely into the theory of geometric quantization through a result

proven by Rawnsley et. al. [17].



2
Geometric preliminaries

This chapter is primarily based on [18] and [14].

2.1 Symplectic geometry

2.1.1 Basic concepts

We introduce the notion of a symplectic manifold and establish some basic properties,

ultimately tying it into classical mechanics.

Definition 2.1.1 (Symplectic manifold). A symplectic manifold is a pair (M,!), where

M is a smooth manifold and ! is a 2-form on M such that:

1. d! = 0 (! is closed)

2. The map TpM ! T
⇤
p
M,X 7! iX! is a linear isomorphism at each p 2 M (! is

nondegenerate).

Definition 2.1.2 (Symplectic vector space). A symplectic vector space (V,!) is a

vector space V and an antisymmetric, nondegenerate bilinear form ! on V .

A symplectic vector space is a canonical example of a symplectic manifold. The tangent

space of any symplectic manifold is, in turn, an example of a symplectic vector space.

For any given subspace of a symplectic vector space F ✓ V , we may speak of its symplectic

complement, defined by F
? = {X : !(X, Y ) = 08Y 2 F}.

9
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We now introduce some terminology. A subspace F ✓ V of a symplectic vector space is

said to be:

• Isotropic if F ✓ F
?

• Coisotropic if F? ✓ F

• Symplectic if F \ F
? = {0}

• Lagrangian if F = F
?.

Note that the categories are not exhaustive.

Lemma 2.1.1. Every finite-dimensional symplectic vector space has even dimension and

contains a Lagrangian subspace.[18]

Theorem 2.1.2. Let (V,!) be a 2n-dimensional symplectic vector space. Then, V has a

basis {X1
, ...X

n
, Y1, ...Yn} such that:

• !(Xa
, X

b) = 0

• 2!(Xa
, Yb) = �

a

b

• !(Ya, Yb) = 0.

Such a basis is called a symplectic frame.[18]

Example 2.1.1 (Cotangent bundle). The cotangent bundle T
⇤
M of a smooth manifold M

is an important example of a symplectic manifold. The relevant 2-form is ! = dpa ^ dq
a,

where {qi} are the components of the covectors and {pi} are the coordinates on M.

It is possible to show that ! is globally determined in a coordinate-independent manner as

d✓, where ✓ is a one-form on T
⇤
M defined by (q, p) 7! (X 7! q(⇡⇤X)), where, for

m = (q, p), X 2 Tm(T ⇤
M), and ⇡⇤ is the pushforward of the projection. In terms of

coordinates, ✓ = qadp
a.

As it turns out, all symplectic manifolds have this form (locally). This will be the content

of the next theorem.

Some work needs to be done to see how the coordinate-independent definition is actually

the same as the one in terms of coordinates.

Let X 2 �(T ⇤
M) =

P
fi

@

@qi
+
P

gi
@

@pi
. Now, (⇡⇤Xm)(f) = X(f � ⇡) (where f 2 C

1(M))

= gi(m) @f

@pi
|p (because f � ⇡ does not depend on {qi}).

In other words, ⇡⇤X =
P

gi
@

@pi
. Then, q(⇡⇤Xm) =

P
gi(p)q(

@

@pi
|p) (where m = (q, p)).

On the other hand, (qadpa)(
P

fi
@

@qi
+
P

gi
@

@pi
)(q, p) =

P
gi(p)q(

@

@pi
|p) directly.

Discussion 2.1.1. Some new concepts will aid us in understanding the subsequent results.
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• Time-dependent vector fields: Let X be a vector field such that X = X
a(x, t) @

@xa , so

that it is a map M ⇥ R ! TM such that X(m, t) 2 TmM . Vector fields with such an

additional parameter t are called time-dependent vector fields.

The ‘ordinary vector field’ X̃ = X + T is defined by X̃ = X
a @

@xa + @

@t
. We will have

X 2 �(M ⇥ R).

Finally, we define the time derivative of X, @tX = @tX
a @

@xa .

• Integral curves: Let �(t) = (x1 � �(t), ..., xn � �(t)), where x : M ! Rn is a chart, and

� : I ! M is such that d�
a

dt
= X

a(�(t)). Then, t 7! �(t) is said to be an integral

curve of the time-independent vector field X.

For a time-dependent vector field, the curve is defined by d�
a

dt
= X

a(�(t), t).

• Flow: Let X be a time-dependent vector field and � be an integral curve such that

�(t) = m. Then, the flow of X is the di↵eomorphism ⇢tt0 : m 7! �(t0). Characterized

by the two subscripted parameters, this map takes the image of � on the first of them

and returns its image on the second.

• Time-dependent di↵erential forms: A time-dependent p-form is defined as a map

↵ : M ⇥ R ! ⇤p(TM) such that ↵(m,t) 2 ⇤p(TmM).

• Lie derivative: The Lie derivative of a di↵erential form along a vector field (both

being time-dependent) LX↵ := iX(d↵) + d(iX↵) + @t↵.

Lemma 2.1.3. Let X be a time-dependent vector field, ⇢tt0 its flow, and ↵ a

time-dependent di↵erential form. Then, the following holds:

d

dt t=t1

(⇢⇤
tt0
⌧t)p = (⇢⇤

t1t0
(LX⌧)t=t1)p

Lemma 2.1.4. Let !,!0 be symplectic structures on M and m 2 M . If !(m) = !
0(m),

there exist neighbourhoods U, V of m and a di↵eomorphism ⇢ : U ! V such that

⇢(m) = m, ⇢
⇤(!0) = !.

Proof. Since !0 � ! is closed, by the Poincaré lemma, there will exist a 1-form ↵ in some

neighbourhood W of m such that d↵ = !
0 � !. If necessary, add a closed 1-form to ↵ to

ensure that ↵(m) = 0.

Next, let ⌦ = ! + t(!0 � !). Note that this is another closed 2-form, with ⌦(m) = !(m).

Let X be the vector field such that iX⌦+ ↵ = 0.

• X is well-defined: Firstly, note that since !(m) = ⌦(m) and ! is non-degenerate (by

virtue of being a symplectic form), ⌦ will also be non-degenerate in a neighbourhood

of m (using the fact that the determinant function is continuous).

But this means that X 7! iX⌦ is a linear isomorphism in that neighbourhood. The

claim follows from this.



12

Note that we will have X(m) = 0, because ↵(m) = 0 =) ⌦m(X(m), Y (m)) = 0 for all

Y 2 �(M) =) X(m) = 0 (by non-degeneracy of ⌦).

Let ⇢tt0 be the flow of X. Then, we claim that ⇢ := ⇢01 is the required di↵eomorphism.

• ⇢
⇤
tt0⌦(t

0) = ⌦(t) : First, let us compute

LX⌦ = iX(d⌦) + d(iX⌦) + @t⌦ = 0� d↵ + ! � !
0 (since d⌦ = 0) = 0. This means

that d

dt t=t00
(⇢⇤

tt0⌦t) = 0 =) ⇢
⇤
tt0⌦(t) = ⇢

⇤
t0t0⌦(t

0) = ⌦(t0).

But now, since ⌦(1) = !
0
,⌦(0) = !, it follows that ⇢⇤!0 = !.

• ⇢(m) = m : Recall that X(m) = 0. This means that the integral curve � of X at m is

constant; the claim follows from this.

This shows that the di↵eomorphism ⇢ is of the required type, and we are done.

Theorem 2.1.5 (Darboux). Let (M,!) be a 2n-dimensional symplectic manifold, and

m 2 M . There is a neighbourhood U of m and a coordinate system {pa, qb}
(a, b = 1, 2, ...., n) on U such that ! = dpa ^ dq

a on U.

Proof. Consider !m 2 ⇤2(TmM). By theorem 2.1.2, we can find a symplectic frame for

TmM ; let us write !0
m
for the representation of the two-form in this basis. Then,

necessarily !0 = dra ^ ds
a.

By the above lemma, there exists a di↵eomorphism ⇢ defined on a neighbourhood U of m

such that ⇢⇤(!0) = !. Define pa = ra � ⇢; qa = s
a � ⇢. Then, ! = dpa ^ dq

a in U , and we are

done.

These coordinates are called canonical or Darboux coordinates. Thus, in some sense, all

symplectic forms look the ‘same’ locally. This can be contrasted with the situation on a

Riemannian manifold, wherein metrics have various local invariants.

Thus, we can also, in the general case, find in the neighbourhood of each point a 1-form ✓

such that ! = d✓. Such a 1-form is called a symplectic potential.

2.1.2 Hamiltonian vector fields

Definition 2.1.3. Let (M,!) be a symplectic manifold and, given an f 2 C
1(M), let Xf

be the vector field such that iXf
(!) + df = 0.

We shall call Xf the Hamiltonian vector field, and its flow ⇢t the canonical flow,

generated by f .

Discussion 2.1.2. In local coordinates, we can work out Xf = @f

@pa

@

@qa
� @f

@qa

@

@pa
(using

Darboux’s theorem).

On the physics side of things, we often intend the symplectic manifold to represent the

phase space of a classical system; C1(M) functions, in turn, are classical observables.
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• f : On the one hand, a classical observable is a measurable quantity which takes on a

value for a given state of the system.

• ⇢t : On the other, it generates a one-parameter family of canonical transformations.

The vector field Xf encodes the geometric connection between these two roles of the

observable. Since LXf
! = 0, the flow of Xf , ⇢t, will in fact always satisfy ⇢⇤

t
(!) = ! (via

an argument similar to the one used in the proof of lemma 2.1.4), making it a (local)

canonical di↵eomorphism.

Definition 2.1.4 (Poisson bracket). The Poisson bracket of f, g 2 C
1(M) is

{f, g} := Xf (g).

In canonical coordinates, {f, g} = @f

@pa

@g

@qa
� @g

@pa

@f

@qa
.

Let us denote by V
H(M) the set of all Hamiltonian vector fields. (C1(M), {, }) is an

infinite-dimensional Lie algebra. The map f 7! Xf is (surjective) a Lie algebra

homomorphism [13] C1(M) ! V
H(M), with kernel equal to the set of constant functions.

So, by the first isomorphism theorem, C1(M)/R ⇠= V
H(M).

Discussion 2.1.3 (Noether’s theorem). Establishing these notions allows us to approach

the mathematical kernel of Noether’s theorem, which famously relates the conserved

quantities in a system with its symmetries:

If, for f, g 2 C
1(M), {f, g} = 0, then g � �f : I ! R is a constant; where �f is an integral

curve of Xf .

This is easy to verify by writing everything out in canonical coordinates.

2.1.3 Symplectic reduction

Often, one has to deal with manifolds with a closed two-forms which has certain

degeneracies. This may happen, for example, in constrained systems. The procedure in

this section describes how to recover a genuine symplectic manifold from that setup. But

before that, introducing some new notions will prove useful.

Discussion 2.1.4. Let M be a smooth manifold.

• Distribution: A subbundle P of the tangent bundle TM such that Pm is a subspace of

TmM and varies smoothly with m.

• Regular: A distribution P is called regular if each subspace Pm has the same

dimension.

• Transverse: A submanifold ⌃ ⇢ M is transverse to P if Tm⌃+ Pm = TmM at each

m 2 M .
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• Integral manifold: An immersed submanifold ⇤ ⇢ M is an integral manifold of a

distribution P if Pm = Tm⇤ for all m 2 ⇤.

• Integrable: A distribution is integrable (or involutive) if

X, Y 2 VP (M) =) [X, Y ] 2 VP (M).

• Foliation: An integrable distribution is called a foliation.

• Leaves: Let P be a foliation on M , and ⇤ ⇢ M be a (connected) integral manifold of

P such that there is no ⇤ ⇢ ⇤0 ⇢ M such that ⇤0 is an integral manifold of P . We

call such ⇤ leaves.

• Reducible: Let P be a foliation on M . We define the following equivalence relation

on M : p ⇠ q () p, q 2 ⇤ for some leaf ⇤ of P . Now, if the quotient space M/⇠ is

a Hausdor↵ manifold, we call P reducible and M/⇠ the space of leaves of P,M/P .

The Frobenius theorem states that a distribution is a foliation i↵ it has an integral

manifold. [12]

Example 2.1.2. It will be instructive to o↵er a simple example of a reducible distribution

before moving on. Let M = R3, and consider the following:

(a) A distribution on R3 (b) The leaves of the distribution

It is now evident that if we pass down to the space of leaves of this foliation, we will be left

with [0,1). Since this is Hausdor↵, we conclude that the distribution was reducible.

Definition 2.1.5 (Characteristic distribution). Let C be a smooth manifold and � be a

two-form on C. Let Kp := {Xp 2 TpM |iXp(�p) = 0}. Suppose further that K is regular.

Then, we call K the characteristic distribution of �.

This distribution collects all the problematic, degeneracy-causing vector fields together.

We want, in some appropriate sense, to quotient it out.

Lemma 2.1.6. If � is closed, K is a foliation.
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Proof. Let X, Y 2 VK(M). We need to show that i[X,Y ](�) = 0. But this follows from the

fact that 3d�(X, Y, Z) = ��([X, Y ], Z).

If this condition holds, we call K the characteristic foliation.

Definition 2.1.6 (Presymplectic manifold). We call (C, �) a presymplectic manifold if

� generates a regular distribution and is closed. Furthermore, we call a presymplectic

manifold reducible if its characteristic foliation is reducible.

We call a closed regular two-form on a manifold a presymplectic form. The nomenclature

is suggestive because it generates a genuine symplectic manifold in the following manner.

Definition 2.1.7 (Reduced phase space). Let (C, �) be a reducible presymplectic

manifold. Let M 0 be the space of leaves, and !0 be a two-form on M
0 defined by being

such that � = q
⇤(!0), q being the quotient map. Then, (M 0

,!
0) is a symplectic manifold,

called the reduced phase space of (C, �).

Well-definedness of !0 well-defined follows from the fact that q is a submersion; and so its

pullback is injective; and losedness from the fact that d commutes with the pullback.

Example 2.1.3. Let C = R3
/{0}, � = 1

r3
(xdy ^ dz + ydz ^ dx+ zdx ^ dy). We show that

(C, �) is a presymplectic manifold and compute its reduced phase space (M,!).

Definition 2.1.8. We call a submanifold C of a symplectic manifold (M,!)

isotropic/coisotropic/ Lagrangian/symplectic if its tangent space is of the

corresponding type as a subspace of TpM for every p 2 C.

Discussion 2.1.5. One is often interested in performing symplectic reduction when one

has, due to some constraint on the phase space, a submanifold C of (M,!) such that

� = !|C is regular. The relevant distribution is defined by Kp = TpC \ TpC
?.

In the symplectic case, reduction is trivial, because the distribution vanishes identically. In

the isotropic and Lagrangian case, the distribution is the whole tangent bundle; and so the

reduced phase space itself becomes trivial.

That leaves us with the coisotropic case for something interesting to happen. The following

result holds:

Kp = span{(Xf )p : f |C= constant}

2.1.4 Coadjoint orbits

Definition 2.1.9 (Symplectic action). Let (M,!) be a symplectic manifold and G be a

Lie group acting on it. We say that the action of G is symplectic if fg : x 7! g · x is a

symplectomorphism for all g 2 G.

Definition 2.1.10 (Adjoint action). Let g be the Lie algebra of a Lie group G. The

derivative at e of the conjugacy map G ! G, a 7! gag
�1 is known as the adjoint action

of G on g, Adg : g ! g.
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Definition 2.1.11 (Coadjoint action). Let G be a Lie group, g its Lie algebra and Adg

the adjoint action. Let g⇤ be the vector space dual of g. The coadjoint action

Ad
⇤
g
: g⇤ ! g⇤ is just the dual map of the adjoint action, defined by:

Ad
⇤
g
(l) = l(Adg)

for l 2 g⇤.

The map g 7! Adg, G ! Aut(g) is known as the adjoint representation of the Lie group;

the map g 7! Ad
⇤
g
, G ! Aut(g⇤) is known as the coadjoint representation of the Lie group.

Definition 2.1.12 (Infinitesimal action). Let G be a Lie group acting on a manifold M .

Its infinitesimal action is the vector field defined by ⇢(⇣)x := d[exp(t⇣) · x]0 for ⇣ 2 g

(wherein we look at exp(t⇣) · x : I ! M).

Recall that exp : g ! G was defined as X 7! �(1), where � : I ! G was a curve such that

�
0(0) = X.

Definition 2.1.13 (Momentum map). A momentum map for a symplectic G-action on

a symplectic manifold (M,!) is a map µ : M ! g⇤ such that the following hold:

1. d[µ(x)(⇣)] = i⇢(⇣)!

2. µ(g · x) = Ad
⇤
g
(µ(x)).

Here, we look at µ(x)(⇣) : M ! R.

A symplectic Lie group action on a symplectic manifold is called a Hamiltonian group

action if a momentum map µ exists, and (M,!, G, µ) is called a Hamiltonian G�space.

Discussion 2.1.6. There is a fair bit of physical context behind the momentum map,

which it will be useful to make transparent.

Firstly, note that one can also consider the so-called comomentum map,

µ
⇤ : g ! C

1(M), which is defined as µ
⇤(⇣)(x) := µ(x)(⇣).

It can be checked that the two properties stated in the above definition are now equivalent

to:

1. µ
⇤(⇣) 2 C

1(M) is a Hamiltonian function for ⇢(⇣).

2. µ
⇤ is a Lie algebra homomorphism.

The upshot of this is that we have found a natural way to assign to each ⇣ 2 g an

observable µ
⇤(⇣) 2 C

1(M). This assignment is what allows us to extract various

symmetries from our system.

The prototypical example is when g is the Lie algebra of the rotation group, in which case

the associated observables are just the components of the angular momentum.
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Definition 2.1.14 (Coadjoint orbit). Let G be a Lie group with Lie algebra g⇤. The

coadjoint orbit of f 2 g⇤ is defined as ⇥f = {h 2 g⇤|h = Ad
⇤
g
f, g 2 G}.

The isotropy group of f 2 g⇤ is defined as H = {g 2 G|Ad⇤
g
f = f}.

We have an isomorphism ⇥f
⇠= G/H ( =) Tp⇥f

⇠= g
h). In fact, not only is it a smooth

manifold, each coadjoint orbit comes equipped with a natural symplectic structure.

Lemma 2.1.7. Let G be a Lie group, and XA denote the infinitesimal action associated

with A 2 g. Then, !(XA, XB) :=
1
2f([A,B]) is a symplectic form on ⇥f .

Discussion 2.1.7. The fact that SU(n+ 1), with the obvious action, acts transitively on

Pn suggests that the latter can be realized as a coadjoint orbit of the former. Let us see how

this comes to be. Our job is, to begin with:

• Finding an element f 2 g⇤ such that the orbit of f is Pn. But since we know

Pn ⇠= SU(n+ 1)/S(U(1)⇥ U(n)) and ⇥f
⇠= G/H, this amounts to:

• Finding an element f 2 g⇤ whose isotropy group is H = S(U(1)⇥ U(n)).

The question becomes how we may hunt down this privileged element of the dual Lie

algebra. We know that coadjoint orbits come with a symplectic structure; the fact that Pn

also has one (the Fubini-Study metric, which we will see in further detail later) should

suggest that it must be used somewhere in this hunt. But first, it will prove illuminating to

unpack the structure of this f a bit more.

• Some quick computation can show that the previous statement is equivalent to having

f(B) = f(gBg
�1) for g 2 H,B 2 g.

• Since H is connected and compact, the exponential map is surjective and we may

write g = exp(tA) for some A 2 h.

• Again, some quick computation can show that df(etABe
�tA) = f([A,B]).

This is very nearly the structure of the symplectic form given by lemma 2.1.7! Suppose we

set F ([A,B]) = 2!FS(XA, XB). Let us fix some B 2 g; then, F is a genuine element of g⇤.

• !FS is defined on Pn = G/H =) !FS is degenerate exactly along

H =) F ([A,B]) = 0 only for A 2 h.

But this last statement is equivalent to having dF (etABe
�tA) = 0 for precisely A 2 h;

which, in turn (running back up to the first statement) means F (B) = F (gBg
�1) for

g 2 H. This shows that F is indeed the linear functional required of us.

Note that !FS being nondegenerate elsewhere was critical in ensuring that the isotropy

group of F is not larger than H.
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2.2 Vector bundles

2.2.1 Basic concepts

Definition 2.2.1 (Vector bundle). Let M be a smooth manifold. A vector bundle over

M is a smooth manifold V , together with a smooth map ⇡ : V ! M such that the

following hold:

1. For each m 2 M,Vm = ⇡
�1(m) is an n-dimensional vector space over R.

2. M has an open cover (Ui, ⌧i), wherein ⌧i : Ui⇥Rn ! ⇡
�1(Ui) ✓ V is a di↵eomorphism

which becomes a linear map Rn ! Vm on restriction to {m}⇥ Rn for each m 2 Ui.

The dimension n of the fibres is to be constant throughout M. It is known as the rank of

the bundle.

A pair (Ui, ⌧i) satisfying the condition described above is known as a local trivialization.

(The nomenclature is supposed to suggest that the map ⇡ locally looks like the projection

U ⇥Rn ! U—since, through ⌧i, the inverse image of a singleton ⇡�1(m) ends up being Rn.)

A vector bundle whose fibre is one dimensional is called a line bundle.

The composite functions ⌧�1
i

� ⌧j : (Ui \ Uj)⇥ Rn ! (Ui \ Uj)⇥ Rn can be written as

(x, v) 7! (x, gUiUj(x)v), where gUiUj are the transition functions of the vector bundle and

map to GL(k).

Example 2.2.1. The canonical example of a vector bundle is the tangent bundle TM ,

with the projection map ⇡ : TM ! M . Each fibre is TpM
⇠= Rn (assuming the manifold

dimension is n). The transition functions will be the Jacobian of the coordinate

transformations.

Definition 2.2.2 (Section). A map s : U ✓ M ! V such that ⇡ � s = IdM is called a

section over U .

We shall denote the space of smooth sections over U by C
1
V
(U). Note that ⌧i(�, x) is a

section. Sections are the relevant generalizations of vector fields in this setup (the target

space goes from TM to any V ).

Given a local trivialization (Ui, ⌧i), we shall call the section si = ⌧i(·, 1) its unit section.
(By linearity, this will actually determine the trivialization.) Note that si 2 C

1
V
(Ui).

Definition 2.2.3 (Transition functions). Let (Ui, ⌧i), (Uj, ⌧j) be two local trivializations of

a line bundle L ! M with sections si, sj. The transition function cij 2 C
1(Ui \ Uj) is

the function such that sj = cijsi.

Lemma 2.2.1. Let M be a smooth manifold with a contractible open cover {Ui} and a

collection of functions {cij}.
Then, if the following cocyle relations hold, it is possible to reconstruct a line bundle on

it with transition functions {cij} (up to a normalizing constant):
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• cjk = c
�1
kj

• cijcjkcki = 1 [18]

Example 2.2.2 (Hyperplane bundle). The following line bundle over CPn will be used

later on. It is natural to see this as the inverse or dual of the universal bundle. The latter

structure is what we shall describe explicitly.

Let L := U1,n be the disjoint union of all one-dimensional subspaces of Cn. To specify an

element in it, we need a line and a point (in that line). Therefore, it has a natural

realization as a subset of G1,n ⇥ Cn, from which it can inherit a smooth structure.

Define ⇡ : U1,n ! CPn
, t(z1, ..., zn) 7! [z1, ..., zn]8t 2 C. Clearly, the fibres are each C for

such a map.

Our local trivializations are (U↵, h↵), where {U↵} is the standard open cover on projective

space, and h↵ : ⇡�1(U↵) ! U↵ ⇥ C, t(z1, ..., zn) ! ([z1, ..., zn], tz↵).

Finally, it is easy to compute that the transition functions (on, say, U↵ \ U�) will take the

form g↵� := z↵
z�
.

This is the universal line bundle, which we may denote by L. The hyperplane bundle is

merely its inverse H = L
�1, with transition functions given by g↵� := z�

z↵
. The open cover

remains the same under the inversion operation.

2.2.2 Connections

Definition 2.2.4 (Connections). Let V be a vector bundle over M . A connection on V

is an operator r which assigns to any s 2 C
1
V
(M) a map rs : TM ! V such that

(rs)p : TpM ! Vp is linear, r distributes over addition and satisfies r(fs) = (df)s+ frs

for any function f 2 C
1(M).

Discussion 2.2.1. Let L ! M be a complex line bundle (in other words, replace R with C

everywhere), and r be a connection on L. Further, let (U, ⌧) be a local trivialization; and s

be its unit section.

The potential 1-form ⇥ 2 ⌦1(U) is implicitly defined (for a given connection and

trivialization) by rs = �i⇥s. (Unpacked, this means that, for any vector field X on U and

p 2 U , (rXs)(p) = �i[⇥(X)](p) · s(p) 2 Vp.)

The curvature of a connection on a line bundle is defined as the two-form ⌦ = d⇥.

Lemma 2.2.2. ⌦(X, Y ) = i([rX ,rY ]�r[X,Y ])

Proof. Let s0 be any smooth section, and  2 C
1(M) be the function which makes

s
0 =  s, where s is the unit section.

Then, rXs
0 = rX( s) = (X( )� i ⇥(X))s, by the Leibniz rule.

We now apply this repeatedly on the right-hand side above. This yields, after some

simplification,

i(⇥([X, Y ])� [⇥(X),⇥(Y )] + (Y (⇥(X))� (X(⇥(Y ))]s0 = i
0(d⇥)s0
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Since ⌦ = d⇥ (and [⇥(X),⇥(Y )] = 0), the formula follows as stated.

If ⌦ = 0, that is, the line bundle has a flat connection, we call it a locally constant line

bundle.

Discussion 2.2.2. There are two indirect ways of specifying connections which we shall

now discuss.

• Connection potentials: Suppose we are given a collection of potential 1-forms {⇥j}
on the manifold. Under what patching condition can we reconstruct a connection

from them?

⇥k �⇥j = i
dcjk

cjk

• Connection forms: Instead of a collection of 1-forms on the manifold, we can also

specify the connection with one 1-form on L
⇥ = L� L0 (where L0 is the submanifold

of L which consists of all the zero vectors across the fibres).

↵ = ⇡
⇤(⇥)� i(⌧�1)⇤(

dz

z
)

This equation may require some unpacking.

First, since ⇡ : L ! M, ⇡
⇤ : ⌦⇤(M) ! ⌦⇤(L), and ⇡⇤(⇥) is a 1-form in some

neighbourhood of L.

Next, ⌧ : U ⇥ C ! ⇡
�1(U), making (⌧�1)⇤ : ⌦⇤(U ⇥ C) ! ⌦⇤(⇡�1(U)).

Since we are working on a complex manifold, z is just the local chart; so, dz

z
makes

sense as a 1-form on M . One may imagine that the action of (⌧�1)⇤ on the ⌦(C)

component is ignored.

It can be shown that this form is independent of local trivialization.

Ultimately, the connection can be recovered by rs = �i(s⇤↵)s, because

s
⇤(↵) = (⇡ � s)⇤(⇥)� i(⌧�1 � s)⇤(dz

z
) = ⇥ (the first is the pullback of the identity map;

the second is the pullback of the constant map).

2.2.3 Čech cohomology

We define a new cohomology theory on a manifold, called the Čech cohomology. Let M be

a smooth manifold and U = {Ui} be an open cover of M .

Definition 2.2.5. A p-cochain relative to U is a collection of (typically, smooth)

functions Fp = {fi,j,...k} (where the indices are from the same indexing set as of the open

cover’s) such that the following hold:

1. Each function fi,j,...k has p+ 1 indices and is defined on Ui \ Uj... \ Uk

2. Fp contains at least one function fi,j...k for each ordered set of p+1 indices for which

Ui \ Uj... \ Uk is non-empty
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3. Each function is skew-symmetric under permutation of its indices

Definition 2.2.6. The coboundary operator � : Fp ! Fp+1 maps each

fj,k...l 7! (p+ 2)⇢ifj,k...l, where ⇢ifj,k...l is the restriction of fj,k...l to Ui \ Uj \ Uk \ ...Ul.

Discussion 2.2.3. We want to see that this defines a cohomology on the topological space.

Firstly, �2 = 0: This is because any function, when acted upon by the coboundary operator

twice, will be both symmetric (switch the two restriction functions) as well as

skew-symmetric (due to condition 3 in the definition of a p-cochain). Call functions in the

kernel of � cocycles, and ones in its range coboundaries. Both form abelian groups under

pointwise operations.

The p
th

Čech cohomology group is the p—cocycles modulo the (p� 1)—cochains.

Theorem 2.2.3. Let M be a smooth manifold. Then, its de Rham cohomology is

isomorphic to its Čech cohomology.

Proof. We restrict ourselves to the case where U is locally finite and contractible, and the

functions in each cochain are locally constant.

The isomorphism is the map f 7! ↵f , where f is a p—cochain and

↵f := fi,j...khidhj ^ ... ^ dhk, where {hi} is a partition of unity subordinate to U, and there

is a sum over the repeated indices.

We briefly indicate the proof of surjectivity for the case n = 2, because it will help us later:

Let ↵ be any closed two form. Locally, ↵ = d�i. Locally, �i � �j = dgij.

It can be checked that the image of the 2—cochain f = {fijk = (gij + gjk + gki)} is ↵.

2.3 Complex geometry

Definition 2.3.1 (Almost complex manifold). Let M be a smooth real manifold of even

dimension. An almost complex structure J on M is a map J : TM ! TM such that

Jp : TpM ! TpM is a linear map satisfying J
2
p
= �1 for all p 2 M .

A manifold with an almost complex structure is an almost complex manifold.

Definition 2.3.2 (Complex manifold). Let M be a second-countable Hausdor↵

topological space with an atlas {(Ui,�i)} such that �i : Ui ! U ✓ Cm is a

homeomorphism. Furthermore, suppose all the transition maps  ji = �j � ��1
i

are

holomorphic. Then, M is a complex manifold with complex dimension m.

A complex manifold of dimension m can also be cast as a real manifold of dimension 2m.

A complex manifold will always have an almost complex structure. On the other hand, an

almost complex manifold cannot, in general, be given a genuine complex structure. The

following result tells us when this is possible.
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Theorem 2.3.1 (Newlander-Nirenberg). Let M be a smooth real manifold with an almost

complex structure J. Then, M can be given a complex structure if the distribution

P = {X � iJ(X)|X 2 �(M)} is integrable.[15]

Note that in the above, Jp : TpM ! TpM must first be extended linearly to the

complexification of TpM . In the standard basis, Jp then takes the form

 
0 1

�1 0

!
.

Put another way, the theorem tells us that the integrability of the distribution defined

above is equivalent to the eigenvectors ( @

@z
,

@

@z̄
) of the map being smoothly extendible to a

neighbourhood of p (which, in turn, amounts to the manifold having a genuine complex

structure).

Discussion 2.3.1. Let M be a complex manifold of dimension m. Then, TpM has

dimension 2m as a vector space over with basis { @

@x1 , ...,
@

@xm ,
@

@y1
, ...,

@

@ym
}. Its

complexification, TpM , is a 2m-dimensional vector space over (note that this is no longer

the tangent space of M); and has the following basis:

@

@zµ
=

1

2
{ @

@xµ
� i

@

@yµ
}, @

@z̄µ
=

1

2
{ @

@xµ
+ i

@

@yµ
}

We can divide the space into a holomorphic and an anti-holomorphic half. The basis for

T
⇤
p
M is the obvious dual. (Note that we will get the same space if we complexify before or

after dualizing, so the order of the * does not matter.)

What we want to do is approach another notion of the exterior derivative. First, recall that

on real manifolds,

dw = d(
X

ai1,...,ikdxi1 ^ ... ^ dxik
) =

X @ai1,...,ik

@xj

dxj ^ dxi1 ^ ... ^ dxik

On a complex manifold, a di↵erential form will be characterized by a holomorphic degree

and an anti-holomorphic degree. So, an arbitrary (r, s)� form will look like the following

(in the standard basis):

! = !µ1...µr⌫1...⌫sdz
µ1 ^ ... ^ dz

µr ^ dz̄
⌫1 ^ ... ^ dz̄

⌫s

Now,

d! = (
@

@z�
!µ1...µr⌫1...⌫sdz

� +
@

@z̄�
!µ1...µr⌫1...⌫sdz̄

�) ^ dz
µ1 ^ ... ^ dz

µr ^ dz̄
⌫1 ^ ... ^ dz̄

⌫s

It is evident that d! is the sum of an (r + 1, s)�form and an (r, s+ 1)�form. Accordingly,

we write

d = @ + @̄

The operators @, @̄ are known as the Dolbeault operators.
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Definition 2.3.3 (Hermitian manifold). A Hermitian manifold is a complex manifold

M equipped with a Hermitian metric, i.e., a map on the complexified tangent bundle which

assigns a Hermitian inner product on the fibres.

Definition 2.3.4 (Kähler form). Let (M, g) be a Hermitian manifold. The two-form

⌦ := i

2(g � ḡ) is called the Kähler form.

Definition 2.3.5 (Kähler manifold). A Kähler manifold is a Hermitian manifold (M, g)

whose Kähler form ⌦ is closed.

In a nutshell, a Kähler manifold is a manifold with three mutually compatible structures:

A complex structure, a symplectic structure and a Riemannian structure.

There are, for example, two ways to apprach the construction of one:

• Complex manifold ! Hermitian metric ! Closed, compatible 2-form

• Riemannian manifold ! Compatible complex structure ! Closed, compatible 2-form

The compatibility between the metric and the symplectic form is via the definition of the

Kähler form. It can also be read as ⌦(X, Y ) = g(JX, Y ), when the metric starts o↵ as real

and we adorn it with a complex structure.

The compatibility between the metric and the complex structure is (in the second

construction) given by the condition making it Hermitian, i.e., gp(JpXp, JpYp) = gp(Xp, Yp).

In the first construction (which is what we used in our definitions), this is true by

definition, and we only need to check it to be closed.

Lemma 2.3.2 (Kähler potential). Let (M, g,!) be a Kähler manifold. Locally, there exists

a real function K called the Kähler potential such that ✓ = �i@K, where ✓ is the

symplectic potential and @ is a Dolbeault operator.[14]

Definition 2.3.6 (Fubini-Study metric). On CPn, define the function K := log(1 + |z|2).
This is a Kähler potential, and gives rise to the Fubini-Study metric.

The symplectic form associated with this is ! = i@@̄K, while the metric itself is explicitly

given by gij̄ :=
@
2

@zi@z̄j
K.
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3
Geometric quantization

This chapter is primarily based on [18], [8] and [16].

3.1 Prequantization

Let us restate our problem before proceeding.

In the classical framework, the state space is a symplectic manifold (M,!) and observables

are C
1(M) functions. In the quantum framework, the state space is vectors in a Hilbert

space H and the observables are Hermitian operators O on H.

The question is how, given (M,!), can one reconstruct (H,O), along with a map

C
1(M) 3 f 7! f̂ 2 O subject to the following conditions:

1. f ! f̂ is linear

2. If f is constant, then f̂ is the multiplication operator

3. If {f1, f2} = f3, then [f̂1, f̂2] = f̂3.

These are Dirac’s quantum conditions, put forward in [5]. There are some obvious Hilbert

spaces and maps one can cook up (discussed in [18]), but they will fail to satisfy these. In

fact, we will have to restrict ourselves to a particular class of symplectic manifolds,

described by the following theorem.

Theorem 3.1.1 (Weil’s integrality condition). Let (M,!) be a symplectic manifold. Then,

there exists a Hermitian line bundle B ! M with a connection r such that the curvature

25
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of r is h̄�1
! () '([ !

2⇡h̄ ]) 2 H
2(M,Z) ✓ H

2(M,R), where ' is the isomorphism between

the de Rham cohomology and the singular cohomology.

Proof. We prove su�ciency first, followed by necessity.

• Su�cient: Suppose '([ !

2⇡h̄ ]) 2 H
2(M,Z). Let its image in the Čech cohomology be

f = {fjkl = ( 1
2⇡h̄(ujk + ukl + ulj))} (constructed per theorem 2.4). By assumption,

the range of each fjkl will be contained in Z.

Define cjk := e

iujk
h̄ . It can be checked that these satisfy the cocycle conditions 2.3,

and thereby determine a line bundle B ! M . Furthermore, since they satisfy
dcjk

cjk
= i

h̄
(✓j � ✓k), one can also reconstruct a connection r with curvature h̄�1

! (see

the discussion on connection potentials). The existence of a compatible Hermitian

structure is a known result.

• Necessary: Suppose we have a Hermitian line bundle B ! M and connection r with

curvature h̄�1
!. It su�ces to show (by the de Rham—Čech isomorphism) that

ujkl = ujk + ukl + ulj are integer-valued for dujk = ✓j � ✓k, where
d✓j

2⇡h̄ = !. (Note that

the functions ujkl are locally constant, which is why the Čech cohomology is

well-defined.)

But now note that ✓j � ✓k = 2⇡ih̄d(loggjk) for transition functions gjk. It follows that

ujkl =
1

2⇡ih̄(loggjk + loggkl + logglj) =) e
2⇡ih̄ujkl = 1 (using the cocycle condition)

=) ujkl 2 Z, which completes the proof.

Definition 3.1.1. A symplectic manifold (M,!) is said to be quantizable whenever !

satisfies the integrality condition.

The Hermitian line bundle B ! M with connection r is said to be the prequantum

bundle.

Definition 3.1.2 (Kostant-Souriau prequantum operator). Let (M,!) be a quantizable

symplectic manifold and B ! M be the prequantum bundle.

Let H be the Hilbert space of square integrable sections s : M ! B with inner product

hs, s0i :=
R
M
(s, s0)dV (where (s, s0) is the inner product on the Hermitian line bundle).

Then, the operator f 7! (f̂ : s 7! �ih̄rXf
s+ fs) is called the prequantum operator.

f̂ , as defined above, is Hermitian, and satisfies Dirac’s quantum conditions.

Example 3.1.1 (Cotangent bundle). Let us consider the simplest classical observables,

position and momentum, and see what the prequantized operators look like.

Let M = T
⇤
Q for some configuration space Q having coordinates qa. Give it an exact

symplectic form ! = dpa ^ dq
a with symplectic potential ✓ = padq

a. Set

B = M ⇥ C,r = d� ih̄
�1
✓ (with the obvious trivialization). It is clear that ⌦ = h̄

�1
!.
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1. f = pa : Xf = @f

@pa

@

@qa
� @f

@qa
@

@pa
= @

@qa
.

�ih̄rXf
+ f = (�ih̄)( @

@qa
� ih̄

�1(padqa)(
@

@qa
)) + pa = �ih̄

@

@qa
.

2. f = q
a : A similar computation as above yields q̂

a = ih̄
@

@pa
+ q

a.

Example 3.1.2 (Torus). For a more involved example, let us consider the prequantization

of the two-dimensional torus, as done in [9].

Setup:

• T
2 = R2

/Z2

• ! = Ndx ^ dy

• C
1(T 2) ⇠= Doubly periodic functions on the plane, i.e.,

f(x+m, y + n) = f(x, y),m, n 2 Z

Now, the information we need to specify a prequantum bundle is an open cover on T
2 with

a collection of functions, along with a collection of one-forms. The functions have to satisfy

the cocycle relations (this gives us a line bundle), and the one-forms have to be connection

potentials (this gives us a connection—of course, which must also have the right curvature).

For the open cover, consider U± = {(x, y) 2 (±�, 1± �)⇥ [0, 1])}. Identifying y = 0, y = 1

and x, x+ 1, x 2 (��, �) returns the torus.

The following are genuine transition functions (it can be checked that they satisfy the

cocycle conditions):

c(x, y) =

(
1, x 2 (�, 1� �)

e
�i

N
h̄ y
, x 2 (��, �)

)

With this, the following connection potentials will do the job:

✓± =
N

h̄
xdy

It is immediate that the integrality condition is satisfied. A quick computation will establish

that, for r = d� i✓, the prequantum operator has the form

(�ih̄)(
@f

@x
[
@

@y
� N

h̄
x]� @f

@y

@

@x
) + f

A final remark: The prequantum Hilbert space consists of square-integrable maps satisfying

�(x+m, y + n) = e
i
N
h̄ �(x, y) (this follows from the form of the transition functions).

The trouble with prequantization is that, in general, the Hilbert space obtained is too ‘big’.

For example, say we want to take a free particle in phase space to a quantum-mechanical

free particle. Our ambient manifold is R2n, and the quantum-mechanical system is an

irreducible representation of the Heisenberg algebra. However, a prequantization of R2n
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yields only a reducible representation of the Heisenberg algebra; the quantized position and

momentum operators have invariant subspaces.

Similarly, a prequantization of S2 comes nowhere close to yielding an irreducible

representation of u(2) (for the theory of spin).

One way to deal with this is by using polarizations.

3.2 Polarization

Definition 3.2.1 (Complex polarization). Let (M,!) be a symplectic manifold. A

complex polarization P on M is a distribution on the complexified tangent bundle TCM

such that:

• Each Pm ✓ (TmM)C is a Lagrangian subspace

• The dimension of D = P \ P̄ \ TM is constant

• P is integrable

Discussion 3.2.1. Any Kähler manifold admits two natural polarizations.

• Holomorphic polarization: Let P = {X 2 TCM |JX = iX}. It can be checked

that this is a Kähler polarization; and is, in fact, generated by the holomorphic half

of the tangent space basis.

• Anti-holomorphic polarization: We have P̄ = {X 2 TCM |JX = �iX}. It can
be checked that this is a Kähler polarization; and is, in fact, generated by the

anti-holomorphic half of the tangent space basis.

Definition 3.2.2 (Polarized section). Let P be a complex polarization on a symplectic

manifold M with vector bundle B. A smooth section s : M ! B is said to be polarized if

rX̄s = 0 for every X 2 VP (M).

Going back to our problem: We can choose a polarization P and try cutting down our

Hilbert space of prequantization down to only those square-integrable smooth sections

which are polarized with respect to P .

However, there are two issues in the general situation: Existence and closure. A quick

example will help illustrate the first.

Example 3.2.1. Let M = T
⇤
Q for any n�dimensional smooth manifold Q, and equip it

with the canonical coordinates {q1, ..., qn, p1, ..., pn} and the usual projection map

⇡ : M ! Q.

Let D = ker(d⇡) = span{ @

@p1
, ...,

@

@pn
}.
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• Leaves: A basic theorem tells us that ker(d⇡p) = Tp⇤p, where ⇤ = ⇡
�1(p). Thus, our

leaves are the submanifolds given by ⇤x = ⇡
�1(x) for x 2 Q; in other words, they are

the fibres TpQ of the projection.

• Space of leaves: If we identify each of the fibres in the cotangent bundle to a point, it

pinches down to our original manifold. Therefore, M/D ⇠ Q.

• Polarized sections: Our polarized sections are ones of the form @s

@pi
= 0 =) s ⌘ s(q).

For the sake of concreteness, let Q = S
1. Then, each leaf ⇤p ⌘ TpS

1. Are polarized

sections square integrable here?

Z

M

hs, sidV =

Z

T ⇤S1

hs(q), s(q)idpi ^ dqi =

Z

S1

hs(q), s(q)idqi
Z

TS1

Kdpi = 1

because our sections will be of some constant value K over TS
1—which, in turn, is not

compact.

So, even in this relatively simple example, there turn out to be no nonzero

square-integrable polarized sections. One can try to remedy this by restricting integration

over only the relevant variables; formally, this procedure is known as metaplectic

correction. We will not discuss it in more detail here.

Moreover, a quantized operator f̂ will not, in general, map polarized sections to polarized

sections. One can compute that:

rX̄ f̂ = [rX̄ , f̂ ] + f̂rX̄ = f̂rX̄ � ih̄r[X̄,Xf ]

Therefore, something one might want to ensure is that the Hamiltonian vector field Xf of

the observable f ‘preserves’ P̄ (as this can be seen to ensure f̂ s being polarized).

3.3 Obstructions

There is an alternative way of framing the problems of irreducibility we saw above. This

line of investigation was initiated in [8],[9] and other related works.

Definition 3.3.1 (Basic set). Let (M,!) be a symplectic manifold. A basic set is a

finite-dimensional linear subspace B ⇢ C
1(M) such that:

1. 1 2 B

2. B is transitive & minimal

Definition 3.3.2 (Quantization). Let (M,!) be a symplectic manifold, and

B ⇢ O ⇢ P = C
1(M) be such that O is a Poisson subalgebra and B is a basic set. Then,

a quantization of the pair (O,B) is an operator Q such that:
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• Q : O ! Herm(H) is a prequantum operator

• Q(B) is irreducible & integrable

where, in the first condition, the right-hand side is Hermitian operators on H, the Hilbert

space of square integrable sections on a prequantum bundle B ! M .

Let us clarify some of the notions mentioned above.

1. Transitive: The set {Xf |f 2 B} spans the tangent spaces to M everywhere. The

idea is to have a ‘complete’ set of classical observables.

2. Minimal: There exists no transitive subspace of B.

3. Irreducible: The idea is for the quantized observables to have no invariant subspaces

in Herm(H). An alternative recasting of this—using Schur’s lemma—would be to

require that scalar matrices are the only elements of Herm(H) which commute with

the quantized observables.

4. Integrable: This condition essentially requires that our Lie algebra representation be

extendible to a Lie group representation in the following sense: Given a Lie algebra

representation Q : P(B) ! Herm(H) (where P(B) is the Poisson algebra generated

by B), we require that there exist a Lie group with unitary representation

⇧ : G ! Herm(H) such that TeG
⇠= P(B) and d⇧ = Q.

A full quantization is one in which O = C
1(M). It was proven in [8] that there are no

nontrivial full quantizations of (C1(R2n), h(2n)) or (C1(S2), u(2)). In a sense, this is

nothing but a restatement of the remarks made at the end of section 3.1. We will sketch a

proof of the latter result here.

Lemma 3.3.1. There is no non-trivial full quantization of (C1(S2), u(2)).

Proof. Let Q be a quantization of the above on a prequantum bundle B ! M with Hilbert

space H, and {1, S1, S2, S3} be the standard basis set for u(2). The symplectic form is:

! =
1

2s2

3X

i,j,k=1

✏ijkSidSj ^ dSk

where s
2 = S

2
1 + S

2
2 + S

2
3 . From this, it is immediate that the Poisson bracket takes the

following form:

{f, g} = �
3X

i,j,k=1

✏ijkSi

@f

@Sj

@g

@Sk

(Note that we may understand Si as a C
1(M) function via the fact that the manifold can

be realized as a coadjoint orbit of this Lie group. The symplectic form is likely nothing but

the one associated with the Fubini-Study metric.)
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From the above, we have that, in particular:

{Sj, Sk} = �
3X

l=1

✏jklSl

Then, by assumption:

[Q(Sj), Q(Sk)] = ih̄

3X

l=0

✏jklQ(Sl) (3.1)

Also,

Q(
3X

i=1

S
2
i
) = s

2
I (3.2)

Finally,
3X

i=1

Q(Si)
2 = h̄

2
j(j + 1)I (3.3)

We claim that (3.1), (3.2), (3.3) together produce a contradiction. The last one utilized

integrability and irreducibility in its derivation. It can be shown that they, together with

irreducibility, lead to the following equation:

Q(SiSk) =
a

2
(Q(Si)Q(Sk) +Q(Sk)Q(Si)) (3.4)

If we follow these rules and quantize the following two equations, we will arrive at a

contradiction:

s
2
S3 = {S2

1 � S
2
2 , S1S2}� {S2S3, S3S1}

2s2S2S3 = {S2
2 , {S1S2, S1S3}}�

3

4
{S2

1 , {S2
1 , S2S3}}

This completes the proof.

The derivation of equation 3.4 is highly lengthy and technical, but can be found in [10]. At

any rate, we are now in a position to ask some interesting questions.

Question: What do these obstruction results look like in the language of polarizations?

Conjecture: Let B ! S
2 be a prequantum bundle and H = L

2(C1
B
(S2)). Then, there is

no polarization HP of H such � : u(2) ! Herm(HP ) is an irreducible representation.

Question: Noting that CP1 = S
2, is there an obstruction to a full quantization of CPn for

all n 2 N?

Conjecture: There exists no full quantization of CPn for B = u(n+ 1).

Finally, one can also try to generally classify spaces for which a non-trivial full

quantization exists. In [8], it is conjectured that if we choose a basic set B such that

P (B), the Poisson algebra generated by B, is dense in C
1(M), then there exists a

non-trivial full quantization.
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3.4 Quantization of states

We have completed discussing an approach to quantizing observables. Now, let us go

further and try to quantize states as well. A classical state can be understood merely as a

point on the manifold; however, for a quantum-mechanical state, the appropriate

framework cannot merely be our Hilbert space. This is because quantum-mechanical states

are essentially the same upon being multiplied by a scalar. Therefore, our idea will be to

construct an embedding M ! CP(H), the projective Hilbert space. The construction

discussed here is based on [16].

For our setup, let M be a Kähler manifold with prequantum bundle M ! B. Let us also

impose a polarization and denote by �F (E) the space of holomorphic global sections

(where F = T
(0,1)

M).

Definition 3.4.1 (Quantum states). The complex Hilbert space of quantum states H

consists of holomorphic sections s : M ! E ⌦ T
⇤(n,0)(M) such that hs, si < 1, where

hs, ti := i
n
2 R

M
(s, t) and (s, t) is from the Hermitian structure on the line bundle.

In geometric quantization, the Hilbert space was usually simply defined as (a subspace of)

square-integrable sections, where integration was against the natural top-form associated

with a symplectic manifold. In this case, allowing our section to choose an n�form as well

gives us some extra freedom in what volume form or measure to integrate against.

Definition 3.4.2 (Quantizable observables). The Lie algebra of quantizable observables is

defined as CFF := {f 2 C
1(M) : [Xf , F ] ✓ F}.

Recall from the discussion in the previous section that this is done in order to ensure that

the quantized operator maps polarized sections to polarized sections.

Definition 3.4.3 (Kostant-Souriau quantization operator). The quantization operator is

given by f 7! f̂ := 1
i
[(rXf

+ if)⌦ LXf
]

The first half of f̂ acts on the ‘pure’ section, while the Lie derivative acts on the

di↵erential form.

Lemma 3.4.1. f̂ is a Hermitian operator.[16]

We are now ready to define the embedding we were looking for. Firstly, note that in a

local trivialization (U↵, ⌧↵), we may write s =  ↵s↵ ⌦ dz
1
↵
^ ... ^ dz

n

↵
, ↵ 2 C

1(M).

For a fixed z in this local trivialization, consider the ‘evaluation’ functional

Hz : s 7!  ↵(z). This is an element of H⇤. If we show that this is a continuous linear

functional, it follows from the Riesz representation theorem that

Hz(s) =  ↵(z) = hK↵̄(z̄, ·), si
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for some K↵̄ 2 H. Since Hz depends on z,K↵̄ will, in general, depend on z̄ (since the inner

product is Hermitian). This is what gives us our embedding:

M ! CP(H), z 7! [K↵̄(z̄, ·)]

Lemma 3.4.2. Hz is continuous.

Proof. We prove that |Hz(s)|= |'↵(z)| c↵||s|| for some positive constant c↵. Then, Hz

will be continuous by virtue of being bounded.

||s||= (
R
M
(s, s))

1
2 = (

R
U↵
|'↵|2||s↵||2dz1↵ ^ ... ^ dz

n

↵
^ d̄z

1
↵
^ ... ^ d̄z

n

↵
)
1
2 �

R
U↵
|'↵|·||s↵||dz1↵ ^ ... ^ dz

n

↵
^ d̄z

1
↵
^ ... ^ d̄z

n

↵
= ||'↵||1·||s↵||1, where we used Hölder’s

inequality in the middle.

We know that 0 < ||s↵||1< 1. Therefore, taking it to the right-hand side, we get

c↵||s||� ||'↵||1.
But finally, recall that we had assumed '↵ is holomorphic. Then, for any

z 2 D ✓ U↵, |'↵(z)|⇠
R
D
'↵ by Cauchy’s theorem. This completes the proof.

Definition 3.4.4 (Reproducing kernel). The reproducing kernel function K↵̄�(z̄, ·) is
defined as the C

1(M) function attached locally to K↵̄(z̄, ·) viewed as a section:

K↵̄(z̄, v) = K↵̄�(z̄, v)s� ⌦ dv
1
�
^ ... ^ dv

n

�

What we wanted to do was not just map, but embed classical phase space into quantum

phase space. For this, we need to characterize when the di↵erential of the map we have

defined will be nonsingular. This turns out to be true if the map is injective and a certain

special quadratic form is positive-definite.

Another remark deserves being made here: We would want two distinct points z1, z2 2 M

to map to distinct elements in the projective Hilbert space. The following condition would

ensure this: For all z1, z2 2 M , there are sections s1, s2 such that

[ 1↵(z1) 2�(z2)�  1�(z2) 2↵(z1)] 6= 0. (Otherwise, the relevant sections would have been

multiples of each other and thus equal in projective space.)
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4
Deformation quantization

This chapter is primarily based on [4], [7] and [3].

4.1 Idea

As initiated in [2], the idea behind deformation quantization is to treat quantization as “a

deformation of the structure of the algebra of classical observables, rather than as a radical

change in the nature of the observables.”

Abstractly, its aim is to equip the classical algebra of observables with a structure (a

formal deformation, most commonly referred to as the *—product) which produces an

associative algebra on C
1(M) over some formal parameter (most commonly, h̄).

This associative algebra, with its commutator, is supposed to formulate quantum theory;

and, under a certain limit, is expected to reproduct the Poisson bracket as well as the

pointwise product on the original classical algebra.

One can see some immediate advantages to this approach.

• Unlike geometric quantization, deformation quantization is not indi↵erent to the

pointwise multiplicative structure on C
1(M).

• While geometric quantization has various obstructions, deformation quantization is

possible on any symplectic manifold.

While deformation quantization is to be understood on its own terms, we shall also

(following [3]) define a particular *—product on CPn and describe its construction

35
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explicitly in the backdrop of geometric quantization.

A natural way of approaching the study of deformation quantization is by studying

deformations on the following increasingly general structures:

(R2n
,!) ! (Rd

, ⇡) ! (M,!) ! (M, ⇡)

where ! is a symplectic structure and ⇡ is a Poisson structure.

The first of these is the Moyal product (on the Weyl algebra); the movement from this to

any symplectic manifold (M,!) is what was done in [6]. The fact that a deformation

quantization exists for any arbitrary Poisson manifold (M, ⇡)—the final rung on the

ladder—was proven by Maxim Kontsevich in 1997 [11], and is (in some sense) modelled on

Fedosov’s first generalization.

Definition 4.1.1 (Formal deformation). Let A be a commutative associative algebra with

unit over some commutative base ring R, and h̄ be a formal parameter. Then, a formal

deformation of A is the algebra A[h̄] of formal power series over the ring k[h̄] of formal

power series.

Elements of the deformed algebra are of the form
P

cih̄
i
, ci 2 A. Their product is given by

(
P

aih̄
i) ·h̄ (

P
bjh̄

j) =
P

(ar�lbl)h̄
r.

Definition 4.1.2 (Star product). A star product is a k[h̄]-linear associative product ?

on A[h̄] which deforms the trivial extension; that is, such v ? w = v ·h̄ w modulo h̄ for

v, w 2 A[h̄].

In the case of Poisson manifolds, we are concerned with formal deformations and star

products with a particular structure.

Definition 4.1.3. A star product on a Poisson manifold (P, ⇡) is an R[h̄]�bilinear map

? : C1(P )[h̄]⇥ C
1(P )[h̄] ! C

1(P )[h̄] such that:

1. f ? g = fg +
P

i�1 Bi(f, g)h̄
i

2. (f ? g) ? h = f ? (g ? h)

3. 1 ? f = f ? 1

where the Bi are (bounded) bidi↵erential operators on C
1(P ).

Example 4.1.1 (Moyal product). Consider the standard symplectic manifold (R2n
,!0)

with local Darboux coordinates. The Moyal product is defined as:

(f ? g)(x) = exp(� ih̄

2
!
ij
@

@qi

@

@pj
)f(x)g(y)|y=x

(where note that, since we are in the Darboux coordinates, the components !ij will be

constants). It is straghtforward to check that this satisfies the three conditions above (using

the Baker-Campbell-Hausdor↵ formula to verify the first).
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4.2 Berezin quantization of CPn

Recall the construction of the hyperplane bundle H ! CPn in example 2.2.2.

Lemma 4.2.1. The curvature form on H
⌦m is given by m⌦FS, where ⌦FS is the Kähler

form associated with the Fubini-Study metric and H
⌦m is the m-th tensor power of H.[4]

Discussion 4.2.1. Let [1, µ1, ..., µn] be homogeneous coordinates for U0, and let

 (q1,...,qn;q)(µ) =
1p

D(q1,...,qn;q)

µ
q1
1 ...µ

qn
n

where
P

qi = q, q 2 {0, 1, ...,m} and

D(q1,...,qn;q) = c(m)

Z

U0

|⌫1|2q1 ...|⌫n|2qn
(1 + |⌫|2)m dV (⌫)

where

(c(m))�1

Z

U0

1

(1 + |⌫|2)mdV (⌫)

where �FS(µ, ⌫̄) = ln(1 + µ · ⌫̄) and

dV (µ) = |⌦n

FS
(µ)|U0 |=

|dµ ^ dµ̄|
(1 + |µ|2)n+1

using the fact that Cn ⌘ U0 ⇢ CPn. Finally, define the following inner product on the

function space of U0:

hf, gi = c(m)

Z

U0

f(⌫)g(⌫)

(1 + |⌫|2)mdV (⌫)

Lemma 4.2.2. { (q1,...,qn;q)} forms an orthonormal basis for sections of H⌦m on

U0 ⇢ CPn.[4]

We have described sections on U0 ⇢ CPn. The result is essentially the same for the

remaining {Ui}, which together cover CPn.

Discussion 4.2.2 (Coherent states). There are two technically distinct but ultimately

identical ways to approach the definition of coherent states. In the setup, let (M,!) be a

quantizable symplectic manifold with polarization P , L a Hermitian line bundle, and H the

set of square integrable polarized sections.

• General case: For any q 2 L0, define lq 2 H⇤
, lq(s)q = s(⇡(q)). That it is a linear

continuous functional follows from considerations similar to lemma 3.4.2. We can

therefore once again apply the Riesz representation theorem to get the following

sections eq out:

hs, eqi = lq(s)
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These eq are known as the coherent states. Taking their inner product with a given

section s evidently acts as a kind of evaluation on s.

We have, on the other hand,

• CPn: More explicitly, coherent states are defined here as

 µ(⌫) :=
X

P
qi=q,q2{0,...,m}

 (q1,...,qn;q)(µ) (q1,...,qn;q)(⌫)

It is easy to prove (via orthonormality) that they satisfy the following so-called

‘reproducing kernel property’: h µ, i =  (µ).

The connection is not too di�cult to see:

[h µ, i =  (µ)] ⌘ [heq, si = lq(s)]

Definition 4.2.1 (Symbol). Let Â : H ! H be a bounded operator. Then, we define its

symbol, A, to be the following C
1(M) function:

A :=
hÂ µ, µi
|| µ||2

In the other notation, this is hÂeq ,eqi
||eq ||2 .

Having established this much, the noncommutative star product is finally within our reach.

It is defined in the following manner:

A1 ? A2 := A1 � A2,

that is, it is the symbol of the operator Â1 � Â2.

The fact that this is indeed a deformation of the C
1(M) algebra under an appropriate

limit is what is established by the next theorem.

Theorem 4.2.3 (Berezin). The following limits hold almost everywhere:

1. limm!1(A1 ? A2)(µ) = A1(µ)A2(µ)

2. limm!1m(A1 ? A2 � A2 ? A1)(µ) = i{A1, A2}(µ)[3]

In general, the Berezin symbol gives us a way to go downstairs—to associate a classical

observable, a C
1(M) function, with a Hermitian operator acting on the Hilbert space of

prequantization. On the other hand, the Kostant-Souriau prequantum operator went

upstairs, taking a classical observable and giving out a Hermitian operator. There is a

natural question to ask about how these two processes interact.
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Theorem 4.2.4. Let (M,!) be a quantizable symplectic manifold with polarization F and

Hermitian line bundle with connection (L, h,r). Then, given a quantizable function

f 2 C
1(M), the following schema holds:

f ����������!
Kostant�Souriau

(�ih̄rXf
+ f) ����!

Berezin

(�ih̄X
0
f
(ln✓) + f)

where X
0
f
is the F�component of Xf .[17]

The function ✓ 2 C
1(M) is defined as ✓(x) = |q|2||eq||2, q 2 L0, ⇡(q) = x.

It is easy to see that this is well-defined: For let ⇡(q) = ⇡(q0) = x, and q
0 = cq (since we’re

dealing with a line bundle). On the other hand,

lcq(s) · cq = s(x) = lq(s) · q =) lcq(s) = c
�1
lq(s) =) ecq = c

�1
eq; and so the product

remains unchanged.

In particular, then, ✓(x) = |s0(x)|2||es0(x)||2, from which continuity follows.
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